Testing heteroskedasticity in trace regression with low-rank matrix parameter

被引:0
|
作者
Tan, Xiangyong [1 ,2 ]
Lu, Xuanliang [1 ]
Hu, Tianying [1 ,2 ]
Li, Hongmei [1 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat & Data Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Jiangxi Univ Finance & Econ, Key Lab Data Sci Finance & Econ, Nanchang, Jiangxi, Peoples R China
基金
中国博士后科学基金;
关键词
Heteroskedasticity; Trace regression model; Low-rank; C22; XXX; HETEROSCEDASTICITY; VARIANCE;
D O I
10.1080/03610926.2025.2472791
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Heteroskedasticity testing is crucial in regression analysis, yet research on heteroskedasticity tests for matrix data remains limited. This article introduces a novel approach for testing heteroskedasticity in trace regression, using the nuclear norm penalty to account for the low-rank structure of the unknown parameters. Under some mild conditions and the null hypothesis, we derive the asymptotic distribution of the test statistic. Both simulation results and analyses of real data demonstrate that the proposed testing procedure performs well.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Modal-Regression-Based Structured Low-Rank Matrix Recovery for Multiview Learning
    Xu, Jiamiao
    Wang, Fangzhao
    Peng, Qinmu
    You, Xinge
    Wang, Shuo
    Jing, Xiao-Yuan
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (03) : 1204 - 1216
  • [42] A general robust low-rank multinomial logistic regression for corrupted matrix data classification
    Hu, Yuyu
    Fan, Yali
    Song, Yan
    Li, Ming
    APPLIED INTELLIGENCE, 2023, 53 (15) : 18564 - 18580
  • [43] Low-Rank Matrix Recovery via Continuation-Based Approximate Low-Rank Minimization
    Zhang, Xiang
    Gao, Yongqiang
    Lan, Long
    Guo, Xiaowei
    Huang, Xuhui
    Luo, Zhigang
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 559 - 573
  • [44] A preconditioned low-rank CG method for parameter-dependent Lyapunov matrix equations
    Kressner, Daniel
    Plesinger, Martin
    Tobler, Christine
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (05) : 666 - 684
  • [45] Matrix covariates regression with simultaneously low rank and row(column) sparse parameter
    Zhao, Junlong
    Zhan, Shushi
    Niu, Lu
    PROCEEDINGS OF 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA 2015), 2015, : 542 - 546
  • [46] On the equivalence between low-rank matrix completion and tensor rank
    Derksen, Harm
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 645 - 667
  • [47] Adaptive quantile low-rank matrix factorization
    Xu, Shuang
    Zhang, Chun-Xia
    Zhang, Jiangshe
    PATTERN RECOGNITION, 2020, 103
  • [48] Structural Identifiability in Low-Rank Matrix Factorization
    Epameinondas Fritzilas
    Martin Milanič
    Sven Rahmann
    Yasmin A. Rios-Solis
    Algorithmica, 2010, 56 : 313 - 332
  • [49] Low-rank approximation pursuit for matrix completion
    Xu, An-Bao
    Xie, Dongxiu
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 95 : 77 - 89
  • [50] Robust low-rank data matrix approximations
    XingDong Feng
    XuMing He
    Science China Mathematics, 2017, 60 : 189 - 200