Testing heteroskedasticity in trace regression with low-rank matrix parameter

被引:0
|
作者
Tan, Xiangyong [1 ,2 ]
Lu, Xuanliang [1 ]
Hu, Tianying [1 ,2 ]
Li, Hongmei [1 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat & Data Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Jiangxi Univ Finance & Econ, Key Lab Data Sci Finance & Econ, Nanchang, Jiangxi, Peoples R China
基金
中国博士后科学基金;
关键词
Heteroskedasticity; Trace regression model; Low-rank; C22; XXX; HETEROSCEDASTICITY; VARIANCE;
D O I
10.1080/03610926.2025.2472791
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Heteroskedasticity testing is crucial in regression analysis, yet research on heteroskedasticity tests for matrix data remains limited. This article introduces a novel approach for testing heteroskedasticity in trace regression, using the nuclear norm penalty to account for the low-rank structure of the unknown parameters. Under some mild conditions and the null hypothesis, we derive the asymptotic distribution of the test statistic. Both simulation results and analyses of real data demonstrate that the proposed testing procedure performs well.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Quantization for low-rank matrix recovery
    Lybrand, Eric
    Saab, Rayan
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (01) : 161 - 180
  • [22] Sensitivity of low-rank matrix recovery
    Breiding, Paul
    Vannieuwenhoven, Nick
    NUMERISCHE MATHEMATIK, 2022, 152 (04) : 725 - 759
  • [23] DECENTRALIZED LOW-RANK MATRIX COMPLETION
    Ling, Qing
    Xu, Yangyang
    Yin, Wotao
    Wen, Zaiwen
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 2925 - 2928
  • [24] Trace regression model with simultaneously low rank and row(column) sparse parameter
    Zhao, Junlong
    Niu, Lu
    Zhan, Shushi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 116 : 1 - 18
  • [25] Sensitivity of low-rank matrix recovery
    Paul Breiding
    Nick Vannieuwenhoven
    Numerische Mathematik, 2022, 152 : 725 - 759
  • [26] LOW-RANK UPDATES OF MATRIX FUNCTIONS
    Beckermann, Bernhard
    Kressner, Daniel
    Schweitzer, Marcel
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2018, 39 (01) : 539 - 565
  • [27] Adaptive Low-Rank Matrix Completion
    Tripathi, Ruchi
    Mohan, Boda
    Rajawat, Ketan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (14) : 3603 - 3616
  • [28] Modifiable low-rank approximation to a matrix
    Barlow, Jesse L.
    Erbay, Hasan
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (10) : 833 - 860
  • [29] On Low-Rank Hankel Matrix Denoising
    Yin, Mingzhou
    Smith, Roy S.
    IFAC PAPERSONLINE, 2021, 54 (07): : 198 - 203
  • [30] Low-Rank Matrix Approximation with Stability
    Li, Dongsheng
    Chen, Chao
    Lv, Qin
    Yan, Junchi
    Shang, Li
    Chu, Stephen M.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48