Testing heteroskedasticity in trace regression with low-rank matrix parameter

被引:0
|
作者
Tan, Xiangyong [1 ,2 ]
Lu, Xuanliang [1 ]
Hu, Tianying [1 ,2 ]
Li, Hongmei [1 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Stat & Data Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Jiangxi Univ Finance & Econ, Key Lab Data Sci Finance & Econ, Nanchang, Jiangxi, Peoples R China
基金
中国博士后科学基金;
关键词
Heteroskedasticity; Trace regression model; Low-rank; C22; XXX; HETEROSCEDASTICITY; VARIANCE;
D O I
10.1080/03610926.2025.2472791
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Heteroskedasticity testing is crucial in regression analysis, yet research on heteroskedasticity tests for matrix data remains limited. This article introduces a novel approach for testing heteroskedasticity in trace regression, using the nuclear norm penalty to account for the low-rank structure of the unknown parameters. Under some mild conditions and the null hypothesis, we derive the asymptotic distribution of the test statistic. Both simulation results and analyses of real data demonstrate that the proposed testing procedure performs well.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] ROBUST LOW-RANK MATRIX ESTIMATION
    Elsener, Andreas
    van de Geer, Sara
    ANNALS OF STATISTICS, 2018, 46 (6B): : 3481 - 3509
  • [32] Sparse and Low-Rank Matrix Decompositions
    Chandrasekaran, Venkat
    Sanghavi, Sujay
    Parrilo, Pablo A.
    Willsky, Alan S.
    2009 47TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1 AND 2, 2009, : 962 - +
  • [33] Generalized Low-Rank Update: Model Parameter Bounds for Low-Rank Training Data Modifications
    Hanada, Hiroyuki
    Hashimoto, Noriaki
    Taji, Kouichi
    Takeuchi, Ichiro
    NEURAL COMPUTATION, 2023, 35 (12) : 1970 - 2005
  • [34] LOW-RANK OPTIMIZATION WITH TRACE NORM PENALTY
    Mishra, B.
    Meyer, G.
    Bach, F.
    Sepulchre, R.
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) : 2124 - 2149
  • [35] Low-rank Tensor Regression: Scalability and Applications
    Liu, Yan
    2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
  • [36] Low-Rank Tensor Thresholding Ridge Regression
    Guo, Kailing
    Zhang, Tong
    Xu, Xiangmin
    Xing, Xiaofen
    IEEE ACCESS, 2019, 7 : 153761 - 153772
  • [37] Boosted Sparse and Low-Rank Tensor Regression
    He, Lifang
    Chen, Kun
    Xu, Wanwan
    Zhou, Jiayu
    Wang, Fei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [38] Low-Rank Approximation of Circulant Matrix to a Noisy Matrix
    Suliman Al-Homidan
    Arabian Journal for Science and Engineering, 2021, 46 : 3287 - 3292
  • [39] Low-Rank Approximation of Circulant Matrix to a Noisy Matrix
    Al-Homidan, Suliman
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (04) : 3287 - 3292
  • [40] Structured Low-Rank Matrix Approximation in Gaussian Process Regression for Autonomous Robot Navigation
    Kim, Eunwoo
    Choi, Sungjoon
    Oh, Songhwai
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 69 - 74