Counting cycles in planar triangulations

被引:0
|
作者
Lo, On-Hei Solomon [1 ]
Zamfirescu, Carol T. [2 ,3 ]
机构
[1] Yokohama Natl Univ, Fac Environm & Informat Sci, 79-2 Tokiwadai,Hodogaya ku, Yokohama 2408501, Japan
[2] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281-S9, B-9000 Ghent, Belgium
[3] Babes Bolyai Univ, Dept Math, Cluj Napoca, Romania
基金
日本学术振兴会;
关键词
Planar triangulation; Cycle enumeration; HAMILTONIAN CYCLES; LONG CYCLES; NUMBER; GRAPHS;
D O I
10.1016/j.jctb.2024.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the minimum number of cycles of specified lengths in planar n-vertex triangulations G. We prove that this number is Omega(n) for any cycle length at most 3 + max{rad(G & lowast;), [(n-3 radius of the triangulation's dual, which is at least logarithmic but can be linear in the order of the triangulation. We also show that there exist planar hamiltonian n-vertex triangulations containing O(n) many k-cycles for any k E {[n - 5 root n1, ... , n}. Furthermore, we prove that planar 4connected n-vertex triangulations contain Omega(n) many k-cycles for every k E {3,. .., n}, and that, under certain additional conditions, they contain Omega(n2) k-cycles for many values of k, including n. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条
  • [41] Controllable morphing of compatible planar triangulations
    Surazhsky, V
    Gotsman, C
    ACM TRANSACTIONS ON GRAPHICS, 2001, 20 (04): : 203 - 231
  • [42] On the number of triangulations of planar point sets
    Seidel, R
    COMBINATORICA, 1998, 18 (02) : 297 - 299
  • [43] Geometry and percolation on half planar triangulations
    Ray, Gourab
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 28
  • [44] Morphing Schnyder Drawings of Planar Triangulations
    Fidel Barrera-Cruz
    Penny Haxell
    Anna Lubiw
    Discrete & Computational Geometry, 2019, 61 : 161 - 184
  • [45] Bijective counting of Kreweras walks and loopless triangulations
    Bernardi, Olivier
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (05) : 931 - 956
  • [46] Counting fair near-triangulations on the disc
    Ren, H
    Liu, YP
    ACTA MATHEMATICA SCIENTIA, 2000, 20 (01) : 49 - 54
  • [47] Bounds for the Oriented Diameter of Planar Triangulations
    Mondal, Debajyoti
    Parthiban, N.
    Rajasingh, Indra
    FRONTIERS OF ALGORITHMIC WISDOM, IJTCS-FAW 2022, 2022, 13461 : 192 - 205
  • [48] UNAVOIDABLE SET OF CONFIGURATIONS IN PLANAR TRIANGULATIONS
    APPEL, K
    HAKEN, W
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 26 (01) : 1 - 21
  • [49] Morphing Schnyder Drawings of Planar Triangulations
    Barrera-Cruz, Fidel
    Haxell, Penny
    Lubiw, Anna
    DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 61 (01) : 161 - 184
  • [50] Contracting planar graphs to contractions of triangulations
    Kaminski, Marcin
    Paulusma, Daniel
    Thilikos, Dimitrios M.
    JOURNAL OF DISCRETE ALGORITHMS, 2011, 9 (03) : 299 - 306