Counting cycles in planar triangulations

被引:0
|
作者
Lo, On-Hei Solomon [1 ]
Zamfirescu, Carol T. [2 ,3 ]
机构
[1] Yokohama Natl Univ, Fac Environm & Informat Sci, 79-2 Tokiwadai,Hodogaya ku, Yokohama 2408501, Japan
[2] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281-S9, B-9000 Ghent, Belgium
[3] Babes Bolyai Univ, Dept Math, Cluj Napoca, Romania
基金
日本学术振兴会;
关键词
Planar triangulation; Cycle enumeration; HAMILTONIAN CYCLES; LONG CYCLES; NUMBER; GRAPHS;
D O I
10.1016/j.jctb.2024.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the minimum number of cycles of specified lengths in planar n-vertex triangulations G. We prove that this number is Omega(n) for any cycle length at most 3 + max{rad(G & lowast;), [(n-3 radius of the triangulation's dual, which is at least logarithmic but can be linear in the order of the triangulation. We also show that there exist planar hamiltonian n-vertex triangulations containing O(n) many k-cycles for any k E {[n - 5 root n1, ... , n}. Furthermore, we prove that planar 4connected n-vertex triangulations contain Omega(n) many k-cycles for every k E {3,. .., n}, and that, under certain additional conditions, they contain Omega(n2) k-cycles for many values of k, including n. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条
  • [21] On light cycles in plane triangulations
    Jendrol, S
    Madaras, T
    Soták, R
    Tuza, Z
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 453 - 467
  • [22] An Isoperimetric Inequality for Planar Triangulations
    Angel, Omer
    Benjamini, Itai
    Horesh, Nizan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 59 (04) : 802 - 809
  • [23] Planar stochastic hyperbolic triangulations
    Curien, Nicolas
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 165 (3-4) : 509 - 540
  • [24] Uniform Infinite Planar Triangulations
    Omer Angel
    Oded Schramm
    Communications in Mathematical Physics, 2003, 241 : 191 - 213
  • [25] An Isoperimetric Inequality for Planar Triangulations
    Omer Angel
    Itai Benjamini
    Nizan Horesh
    Discrete & Computational Geometry, 2018, 59 : 802 - 809
  • [26] A METHOD FOR COLORING PLANAR TRIANGULATIONS
    SYKOW, AA
    KESSELMA.DJ
    NEIMARK, JI
    PODKORYT.WN
    MATHEMATISCHE NACHRICHTEN, 1969, 40 (1-3) : 51 - &
  • [27] Uniform infinite planar triangulations
    Angell, O
    Schramm, O
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 241 (2-3) : 191 - 213
  • [28] Planar stochastic hyperbolic triangulations
    Nicolas Curien
    Probability Theory and Related Fields, 2016, 165 : 509 - 540
  • [29] On the oriented diameter of planar triangulations
    Mondal, Debajyoti
    Parthiban, N.
    Rajasingh, Indra
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (05)
  • [30] Symmetries of unlabelled planar triangulations
    Kang, Mihyun
    Spruessel, Philipp
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):