Counting cycles in planar triangulations

被引:0
|
作者
Lo, On-Hei Solomon [1 ]
Zamfirescu, Carol T. [2 ,3 ]
机构
[1] Yokohama Natl Univ, Fac Environm & Informat Sci, 79-2 Tokiwadai,Hodogaya ku, Yokohama 2408501, Japan
[2] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281-S9, B-9000 Ghent, Belgium
[3] Babes Bolyai Univ, Dept Math, Cluj Napoca, Romania
基金
日本学术振兴会;
关键词
Planar triangulation; Cycle enumeration; HAMILTONIAN CYCLES; LONG CYCLES; NUMBER; GRAPHS;
D O I
10.1016/j.jctb.2024.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the minimum number of cycles of specified lengths in planar n-vertex triangulations G. We prove that this number is Omega(n) for any cycle length at most 3 + max{rad(G & lowast;), [(n-3 radius of the triangulation's dual, which is at least logarithmic but can be linear in the order of the triangulation. We also show that there exist planar hamiltonian n-vertex triangulations containing O(n) many k-cycles for any k E {[n - 5 root n1, ... , n}. Furthermore, we prove that planar 4connected n-vertex triangulations contain Omega(n) many k-cycles for every k E {3,. .., n}, and that, under certain additional conditions, they contain Omega(n2) k-cycles for many values of k, including n. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条
  • [31] Counting geodesics between surface triangulations
    Parlier, Hugo
    Pournin, Lionel
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2025, 178 (01) : 45 - 63
  • [32] A SEPARATION PROPERTY OF PLANAR TRIANGULATIONS
    DIESTEL, R
    JOURNAL OF GRAPH THEORY, 1987, 11 (01) : 43 - 52
  • [33] ON COUNTING TRIANGULATIONS IN D-DIMENSIONS
    DEY, TK
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1993, 3 (06): : 315 - 325
  • [34] Cycles in 5-connected triangulations
    Alahmadi, A.
    Aldred, R. E. L.
    Thomassen, C.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 140 : 27 - 44
  • [35] Planar triangulations, bridgeless planar maps and Tamari intervals
    Fang, Wenjie
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 70 : 75 - 91
  • [36] Rainbow Numbers for Cycles in Plane Triangulations
    Hornak, Mirko
    Jendrol', Stanislav
    Schiermeyer, Ingo
    Sotak, Roman
    JOURNAL OF GRAPH THEORY, 2015, 78 (04) : 248 - 257
  • [37] On random planar graphs, the number of planar graphs and their triangulations
    Osthus, D
    Prömel, HJ
    Taraz, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (01) : 119 - 134
  • [38] Counting Hamiltonian Cycles on Quartic 4-Vertex-Connected Planar Graphs
    Barish, Robert D.
    Suyama, Akira
    GRAPHS AND COMBINATORICS, 2020, 36 (02) : 387 - 400
  • [39] Counting Hamiltonian Cycles on Quartic 4-Vertex-Connected Planar Graphs
    Robert D. Barish
    Akira Suyama
    Graphs and Combinatorics, 2020, 36 : 387 - 400
  • [40] Hamiltonian cycles on random Eulerian triangulations
    Guitter, E
    Kristjansen, C
    Nielsen, JL
    NUCLEAR PHYSICS B, 1999, 546 (03) : 731 - 750