Counting cycles in planar triangulations

被引:0
|
作者
Lo, On-Hei Solomon [1 ]
Zamfirescu, Carol T. [2 ,3 ]
机构
[1] Yokohama Natl Univ, Fac Environm & Informat Sci, 79-2 Tokiwadai,Hodogaya ku, Yokohama 2408501, Japan
[2] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281-S9, B-9000 Ghent, Belgium
[3] Babes Bolyai Univ, Dept Math, Cluj Napoca, Romania
基金
日本学术振兴会;
关键词
Planar triangulation; Cycle enumeration; HAMILTONIAN CYCLES; LONG CYCLES; NUMBER; GRAPHS;
D O I
10.1016/j.jctb.2024.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the minimum number of cycles of specified lengths in planar n-vertex triangulations G. We prove that this number is Omega(n) for any cycle length at most 3 + max{rad(G & lowast;), [(n-3 radius of the triangulation's dual, which is at least logarithmic but can be linear in the order of the triangulation. We also show that there exist planar hamiltonian n-vertex triangulations containing O(n) many k-cycles for any k E {[n - 5 root n1, ... , n}. Furthermore, we prove that planar 4connected n-vertex triangulations contain Omega(n) many k-cycles for every k E {3,. .., n}, and that, under certain additional conditions, they contain Omega(n2) k-cycles for many values of k, including n. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar
引用
收藏
页码:335 / 351
页数:17
相关论文
共 50 条
  • [1] Counting Hamiltonian cycles in planar triangulations
    Liu, Xiaonan
    Wang, Zhiyu
    Yu, Xingxing
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 155 : 256 - 277
  • [2] Counting Triangulations of Planar Point Sets
    Sharir, Micha
    Sheffer, Adam
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [3] NUMBER OF HAMILTONIAN CYCLES IN PLANAR TRIANGULATIONS
    Liu, Xiaonan
    Yu, Xingxing
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (02) : 1005 - 1021
  • [4] Counting 5-connected planar triangulations
    Gao, ZCJ
    Wanless, IM
    Wormald, NC
    JOURNAL OF GRAPH THEORY, 2001, 38 (01) : 18 - 35
  • [5] HAMILTONIAN CYCLES IN PLANAR TRIANGULATIONS WITH NO SEPARATING TRIANGLES
    DILLENCOURT, MB
    JOURNAL OF GRAPH THEORY, 1990, 14 (01) : 31 - 49
  • [6] SAMPLING AND COUNTING 3-ORIENTATIONS OF PLANAR TRIANGULATIONS
    Miracle, Sarah
    Randall, Dana
    Streib, Amanda Pascoe
    Tetali, Prasad
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (02) : 801 - 831
  • [7] Counting Cycles on Planar Graphs in Subexponential Time
    Cai, Jin-Yi
    Maran, Ashwin
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 268 - 279
  • [8] Counting Hamiltonian cycles on planar random lattices
    Higuchi, S
    MODERN PHYSICS LETTERS A, 1998, 13 (09) : 727 - 733
  • [9] Counting Cycles on Planar Graphs in Subexponential Time
    Jin-Yi Cai
    Ashwin Maran
    Algorithmica, 2024, 86 : 656 - 693
  • [10] Counting Cycles on Planar Graphs in Subexponential Time
    Cai, Jin-Yi
    Maran, Ashwin
    ALGORITHMICA, 2024, 86 (02) : 656 - 693