Inferring cell trajectories of spatial transcriptomics via optimal transport analysis

被引:0
|
作者
Shen, Xunan [1 ,2 ]
Zuo, Lulu [3 ]
Ye, Zhongfei [1 ]
Yuan, Zhongyang [1 ,4 ]
Huang, Ke [1 ]
Li, Zeyu [1 ]
Yu, Qichao [1 ]
Zou, Xuanxuan [1 ,5 ]
Wei, Xiaoyu [6 ]
Xu, Ping [1 ,7 ,8 ]
Deng, Yaqi [9 ]
Jin, Xin [10 ]
Xu, Xun [10 ]
Wu, Liang [1 ,10 ]
Zhu, Hongmei [10 ]
Qin, Pengfei [1 ,10 ]
机构
[1] BGI Res, Chongqing 401329, Peoples R China
[2] BGI Res, Beijing 102601, Peoples R China
[3] BGI, Tianjin 300308, Peoples R China
[4] Nankai Univ, Coll Life Sci, State Key Lab Med Chem Biol, Tianjin 300071, Peoples R China
[5] Xiangyang 1 Peoples Hosp, Hubei Prov Clin Res Ctr Parkinsons Dis, Dept Neurol, Xiangyang, Hubei, Peoples R China
[6] BGI Res, Hangzhou 310030, Peoples R China
[7] Zhengzhou Univ, BGI Coll, Zhengzhou 450000, Peoples R China
[8] Zhengzhou Univ, Henan Inst Med & Pharmaceut Sci, Zhengzhou 450000, Peoples R China
[9] Chongqing Med Univ, Inst Brain Sci & Dis, Key Lab Major Brain Dis & Aging Res, Minist Educ, Chongqing, Peoples R China
[10] BGI Res, Shenzhen 518083, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.cels.2025.101194
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The integration of cell transcriptomics and spatial position to organize differentiation trajectories remains a challenge. Here, we introduce SpaTrack, which leverages optimal transport to reconcile both gene expression and spatial position from spatial transcriptomics into the transition costs, thereby reconstructing cell differentiation. SpaTrack can construct detailed spatial trajectories that reflect the differentiation topology and trace cell dynamics across multiple samples over temporal intervals. To capture the dynamic drivers of differentiation, SpaTrack models cell fate as a function of expression profiles influenced by transcription factors over time. By applying SpaTrack, we successfully disentangle spatiotemporal trajectories of axolotl telencephalon regeneration and mouse midbrain development. Diverse malignant lineages expanding within a primary tumor are uncovered. One lineage, characterized by upregulated epithelial mesenchymal transition, implants at the metastatic site and subsequently colonizes to form a secondary tumor. Overall, SpaTrack efficiently advances trajectory inference from spatial transcriptomics, providing valuable insights into differentiation processes.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Screening cell–cell communication in spatial transcriptomics via collective optimal transport
    Zixuan Cang
    Yanxiang Zhao
    Axel A. Almet
    Adam Stabell
    Raul Ramos
    Maksim V. Plikus
    Scott X. Atwood
    Qing Nie
    Nature Methods, 2023, 20 : 218 - 228
  • [2] Screening cell-cell communication in spatial transcriptomics via collective optimal transport
    Cang, Zixuan
    Zhao, Yanxiang
    Almet, Axel A. A.
    Stabell, Adam
    Ramos, Raul
    Plikus, Maksim V. V.
    Atwood, Scott X. X.
    Nie, Qing
    NATURE METHODS, 2023, 20 (02) : 218 - +
  • [3] Therapy-associated remodeling of pancreatic cancer revealed by single-cell spatial transcriptomics and optimal transport analysis
    Cao, Jingyi
    Shiau, Carina
    Gong, Dennis
    Gregory, Mark T.
    Yin, Xunqin
    Cho, Jae-Won
    Wang, Peter L.
    Su, Jennifer
    Reeves, Jason W.
    Guo, Jimmy A.
    Lester, Nicole A.
    Bae, Jung Woo
    Zhao, Ryan
    Hemberg, Martin
    Hwang, William L.
    CANCER RESEARCH, 2024, 84 (06)
  • [4] scDOT: optimal transport for mapping senescent cells in spatial transcriptomics
    Nguyen, Nam D.
    Rosas, Lorena
    Khaliullin, Timur
    Jiang, Peiran
    Hasanaj, Euxhen
    Ovando-Ricardez, Jose A.
    Bueno, Marta
    Rahman, Irfan
    Pryhuber, Gloria S.
    Li, Dongmei
    Ma, Qin
    Finkel, Toren
    Konigshoff, Melanie
    Eickelberg, Oliver
    Rojas, Mauricio
    Mora, Ana L.
    Lugo-Martinez, Jose
    Bar-Joseph, Ziv
    GENOME BIOLOGY, 2024, 25 (01):
  • [5] Inferring single-cell and spatial microRNA activity from transcriptomics data
    Herbst, Efrat
    Mandel-Gutfreund, Yael
    Yakhini, Zohar
    Biran, Hadas
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [6] Inferring single-cell resolution spatial gene expression via fusing spot-based spatial transcriptomics, location, and histology using GCN
    Xue, Shuailin
    Zhu, Fangfang
    Chen, Jinyu
    Min, Wenwen
    BRIEFINGS IN BIOINFORMATICS, 2024, 26 (01)
  • [7] Graspot: a graph attention network for spatial transcriptomics data integration with optimal transport
    Gao, Zizhan
    Cao, Kai
    Wan, Lin
    BIOINFORMATICS, 2024, 40 : ii137 - ii145
  • [8] Inferring pattern-driving intercellular flows from single-cell and spatial transcriptomics
    Almet, Axel A.
    Tsai, Yuan-Chen
    Watanabe, Momoko
    Nie, Qing
    NATURE METHODS, 2024, 21 (10) : 1806 - 1817
  • [9] Computational Strategies and Algorithms for Inferring Cellular Composition of Spatial Transcriptomics Data
    Liu, Xiuying
    Ren, Xianwen
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2024, 22 (03)
  • [10] Inferring single-cell trajectories via critical cell identification using graph centrality algorithm
    Gan, Yanglan
    Chu, Jiaqi
    Xu, Guangwei
    Yan, Cairong
    Zou, Guobing
    NEUROCOMPUTING, 2025, 624