Inferring cell trajectories of spatial transcriptomics via optimal transport analysis

被引:0
|
作者
Shen, Xunan [1 ,2 ]
Zuo, Lulu [3 ]
Ye, Zhongfei [1 ]
Yuan, Zhongyang [1 ,4 ]
Huang, Ke [1 ]
Li, Zeyu [1 ]
Yu, Qichao [1 ]
Zou, Xuanxuan [1 ,5 ]
Wei, Xiaoyu [6 ]
Xu, Ping [1 ,7 ,8 ]
Deng, Yaqi [9 ]
Jin, Xin [10 ]
Xu, Xun [10 ]
Wu, Liang [1 ,10 ]
Zhu, Hongmei [10 ]
Qin, Pengfei [1 ,10 ]
机构
[1] BGI Res, Chongqing 401329, Peoples R China
[2] BGI Res, Beijing 102601, Peoples R China
[3] BGI, Tianjin 300308, Peoples R China
[4] Nankai Univ, Coll Life Sci, State Key Lab Med Chem Biol, Tianjin 300071, Peoples R China
[5] Xiangyang 1 Peoples Hosp, Hubei Prov Clin Res Ctr Parkinsons Dis, Dept Neurol, Xiangyang, Hubei, Peoples R China
[6] BGI Res, Hangzhou 310030, Peoples R China
[7] Zhengzhou Univ, BGI Coll, Zhengzhou 450000, Peoples R China
[8] Zhengzhou Univ, Henan Inst Med & Pharmaceut Sci, Zhengzhou 450000, Peoples R China
[9] Chongqing Med Univ, Inst Brain Sci & Dis, Key Lab Major Brain Dis & Aging Res, Minist Educ, Chongqing, Peoples R China
[10] BGI Res, Shenzhen 518083, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.cels.2025.101194
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The integration of cell transcriptomics and spatial position to organize differentiation trajectories remains a challenge. Here, we introduce SpaTrack, which leverages optimal transport to reconcile both gene expression and spatial position from spatial transcriptomics into the transition costs, thereby reconstructing cell differentiation. SpaTrack can construct detailed spatial trajectories that reflect the differentiation topology and trace cell dynamics across multiple samples over temporal intervals. To capture the dynamic drivers of differentiation, SpaTrack models cell fate as a function of expression profiles influenced by transcription factors over time. By applying SpaTrack, we successfully disentangle spatiotemporal trajectories of axolotl telencephalon regeneration and mouse midbrain development. Diverse malignant lineages expanding within a primary tumor are uncovered. One lineage, characterized by upregulated epithelial mesenchymal transition, implants at the metastatic site and subsequently colonizes to form a secondary tumor. Overall, SpaTrack efficiently advances trajectory inference from spatial transcriptomics, providing valuable insights into differentiation processes.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Single-cell spatial transcriptomics
    Christine Weber
    Nature Cell Biology, 2021, 23 : 1108 - 1108
  • [22] Single-cell and spatial transcriptomics analysis of human adrenal aging
    Iwahashi, Norifusa
    Umakoshi, Hironobu
    Fujita, Masamichi
    Fukumoto, Tazuru
    Ogasawara, Tatsuki
    Yokomoto-Umakoshi, Maki
    Kaneko, Hiroki
    Nakao, Hiroshi
    Kawamura, Namiko
    Uchida, Naohiro
    Matsuda, Yayoi
    Sakamoto, Ryuichi
    Seki, Masahide
    Suzuki, Yutaka
    Nakatani, Kohta
    Izumi, Yoshihiro
    Bamba, Takeshi
    Oda, Yoshinao
    Ogawa, Yoshihiro
    MOLECULAR METABOLISM, 2024, 84
  • [23] Spatial transcriptomics with single cell resolution
    Braubach, Oliver
    JOURNAL OF IMMUNOLOGY, 2020, 204 (01):
  • [24] Integration of Computational Analysis and Spatial Transcriptomics in Single-cell Studies
    Wang, Ran
    Peng, Guangdun
    Tam, Patrick P. L.
    Jing, Naihe
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) : 13 - 23
  • [25] GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data
    Yuan, Ye
    Bar-Joseph, Ziv
    GENOME BIOLOGY, 2020, 21 (01)
  • [26] GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data
    Ye Yuan
    Ziv Bar-Joseph
    Genome Biology, 21
  • [27] Integration of single-cell and spatial transcriptomics reveals fibroblast subtypes in hepatocellular carcinoma: spatial distribution, differentiation trajectories, and therapeutic potential
    Liu, Yue
    Dong, Guoping
    Yu, Jie
    Liang, Ping
    JOURNAL OF TRANSLATIONAL MEDICINE, 2025, 23 (01)
  • [28] Integrative analysis methods for spatial transcriptomics
    Lu, Shaina
    Furth, Daniel
    Gillis, Jesse
    NATURE METHODS, 2021, 18 (11) : 1282 - 1283
  • [29] Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding
    Rongbo Shen
    Lin Liu
    Zihan Wu
    Ying Zhang
    Zhiyuan Yuan
    Junfu Guo
    Fan Yang
    Chao Zhang
    Bichao Chen
    Wanwan Feng
    Chao Liu
    Jing Guo
    Guozhen Fan
    Yong Zhang
    Yuxiang Li
    Xun Xu
    Jianhua Yao
    Nature Communications, 13
  • [30] Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding
    Shen, Rongbo
    Liu, Lin
    Wu, Zihan
    Zhang, Ying
    Yuan, Zhiyuan
    Guo, Junfu
    Yang, Fan
    Zhang, Chao
    Chen, Bichao
    Feng, Wanwan
    Liu, Chao
    Guo, Jing
    Fan, Guozhen
    Zhang, Yong
    Li, Yuxiang
    Xu, Xun
    Yao, Jianhua
    NATURE COMMUNICATIONS, 2022, 13 (01)