Screening cell-cell communication in spatial transcriptomics via collective optimal transport

被引:125
|
作者
Cang, Zixuan [1 ,2 ]
Zhao, Yanxiang [3 ]
Almet, Axel A. A. [4 ,5 ]
Stabell, Adam [5 ,6 ]
Ramos, Raul [5 ,6 ]
Plikus, Maksim V. V. [5 ,6 ]
Atwood, Scott X. X. [5 ,6 ]
Nie, Qing [4 ,5 ,6 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC USA
[2] North Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC USA
[3] George Washington Univ, Dept Math, Washington, DC USA
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[5] Univ Calif Irvine, NSF Simons Ctr Multiscale Cell Fate Res, Irvine, CA 92697 USA
[6] Univ Calif Irvine, Dept Dev & Cell Biol, Irvine, CA 92697 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
GENE-EXPRESSION; RECONSTRUCTION; MORPHOGENESIS; ARCHITECTURE; EXPANSION; SEQ;
D O I
10.1038/s41592-022-01728-4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomic technologies and spatially annotated single-cell RNA sequencing datasets provide unprecedented opportunities to dissect cell-cell communication (CCC). However, incorporation of the spatial information and complex biochemical processes required in the reconstruction of CCC remains a major challenge. Here, we present COMMOT (COMMunication analysis by Optimal Transport) to infer CCC in spatial transcriptomics, which accounts for the competition between different ligand and receptor species as well as spatial distances between cells. A collective optimal transport method is developed to handle complex molecular interactions and spatial constraints. Furthermore, we introduce downstream analysis tools to infer spatial signaling directionality and genes regulated by signaling using machine learning models. We apply COMMOT to simulation data and eight spatial datasets acquired with five different technologies to show its effectiveness and robustness in identifying spatial CCC in data with varying spatial resolutions and gene coverages. Finally, COMMOT identifies new CCCs during skin morphogenesis in a case study of human epidermal development. This work presents a computational framework, COMMOT, to spatially infer cell-cell communication from transcriptomics data based on a variant of optimal transport (OT).
引用
收藏
页码:218 / +
页数:25
相关论文
共 50 条
  • [1] Screening cell–cell communication in spatial transcriptomics via collective optimal transport
    Zixuan Cang
    Yanxiang Zhao
    Axel A. Almet
    Adam Stabell
    Raul Ramos
    Maksim V. Plikus
    Scott X. Atwood
    Qing Nie
    Nature Methods, 2023, 20 : 218 - 228
  • [2] Decoding cell-cell communication using spatial transcriptomics
    Agrawal, Ankit
    NATURE REVIEWS GENETICS, 2025, : 295 - 295
  • [3] Inferring cell trajectories of spatial transcriptomics via optimal transport analysis
    Shen, Xunan
    Zuo, Lulu
    Ye, Zhongfei
    Yuan, Zhongyang
    Huang, Ke
    Li, Zeyu
    Yu, Qichao
    Zou, Xuanxuan
    Wei, Xiaoyu
    Xu, Ping
    Deng, Yaqi
    Jin, Xin
    Xu, Xun
    Wu, Liang
    Zhu, Hongmei
    Qin, Pengfei
    CELL SYSTEMS, 2025, 16 (02)
  • [4] Cell-cell communication during collective migration
    Rappel, Wouter-Jan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (06) : 1471 - 1473
  • [5] The landscape of cell-cell communication through single-cell transcriptomics
    Almet, Axel A.
    Cang, Zixuan
    Jin, Suoqin
    Nie, Qing
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 26 : 12 - 23
  • [6] Decoding functional cell-cell communication events by multi-view graph learning on spatial transcriptomics
    Li, Haochen
    Ma, Tianxing
    Hao, Minsheng
    Guo, Wenbo
    Gu, Jin
    Zhang, Xuegong
    Wei, Lei
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [7] Analysis of single-cell and spatial transcriptomics in TNBC cell-cell interactions
    Xin, Yan
    Ma, Qiji
    Deng, Qiang
    Wang, Tielin
    Wang, Dongxu
    Wang, Gang
    FRONTIERS IN IMMUNOLOGY, 2025, 16
  • [8] CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics
    Jin, Suoqin
    Plikus, Maksim V.
    Nie, Qing
    NATURE PROTOCOLS, 2025, 20 (01) : 180 - 219
  • [9] Deciphering cell-cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network
    Yang, Wenyi
    Wang, Pingping
    Xu, Shouping
    Wang, Tao
    Luo, Meng
    Cai, Yideng
    Xu, Chang
    Xue, Guangfu
    Que, Jinhao
    Ding, Qian
    Jin, Xiyun
    Yang, Yuexin
    Pang, Fenglan
    Pang, Boran
    Lin, Yi
    Nie, Huan
    Xu, Zhaochun
    Ji, Yong
    Jiang, Qinghua
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [10] Comprehensive visualization of cell-cell interactions in single-cell and spatial transcriptomics with NICHES
    Raredon, Micha Sam Brickman
    Yang, Junchen
    Kothapalli, Neeharika
    Lewis, Wesley
    Kaminski, Naftali
    Niklason, Laura E.
    Kluger, Yuval
    BIOINFORMATICS, 2023, 39 (01)