Computational Strategies and Algorithms for Inferring Cellular Composition of Spatial Transcriptomics Data

被引:0
|
作者
Liu, Xiuying [1 ]
Ren, Xianwen [1 ]
机构
[1] Changping Lab, Beijing 102206, Peoples R China
关键词
Spatial transcriptomics; Single-cell sequencing; Cellular composition; Spot deconvolution; Cell type decomposition; GENE-EXPRESSION;
D O I
10.1093/gpbjnl/qzae057
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Spatial transcriptomics technology has been an essential and powerful method for delineating tissue architecture at the molecular level. However, due to the limitations of the current spatial techniques, the cellular information cannot be directly measured but instead spatial spots typically varying from a diameter of 0.2 to 100 mu m are characterized. Therefore, it is vital to apply computational strategies for inferring the cellular composition within each spatial spot. The main objective of this review is to summarize the most recent progresses in estimating the exact cellular proportions for each spatial spot, and to prospect the future directions of this field.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Advances in spatial transcriptomics and related data analysis strategies
    Du, Jun
    Yang, Yu-Chen
    An, Zhi-Jie
    Zhang, Ming-Hui
    Fu, Xue-Hang
    Huang, Zou-Fang
    Yuan, Ye
    Hou, Jian
    JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)
  • [2] Advances in spatial transcriptomics and related data analysis strategies
    Jun Du
    Yu-Chen Yang
    Zhi-Jie An
    Ming-Hui Zhang
    Xue-Hang Fu
    Zou-Fang Huang
    Ye Yuan
    Jian Hou
    Journal of Translational Medicine, 21
  • [3] Inferring single-cell and spatial microRNA activity from transcriptomics data
    Herbst, Efrat
    Mandel-Gutfreund, Yael
    Yakhini, Zohar
    Biran, Hadas
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [4] Computational solutions for spatial transcriptomics
    Kleino, Iivari
    Frolovaite, Paulina
    Suomi, Tomi
    Elo, Laura L.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 4870 - 4884
  • [5] GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data
    Yuan, Ye
    Bar-Joseph, Ziv
    GENOME BIOLOGY, 2020, 21 (01)
  • [6] GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data
    Ye Yuan
    Ziv Bar-Joseph
    Genome Biology, 21
  • [7] Computational Approaches and Challenges in Spatial Transcriptomics
    Fang, Shuangsang
    Chen, Bichao
    Zhang, Yong
    Sun, Haixi
    Liu, Longqi
    Liu, Shiping
    Li, Yuxiang
    Xu, Xun
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) : 24 - 47
  • [8] Spatial transcriptomics reveals shared gene and cellular composition in recurrent and primary sclerosing cholangitis
    Hole, Mikal Jacob
    Holm, Kristian
    Ogaard, Jonas
    Braadland, Peder Rustoen
    Melum, Espen
    Hov, Johannes R.
    Chung, Brian K.
    JOURNAL OF HEPATOLOGY, 2023, 78 : S428 - S429
  • [9] Clustering spatial transcriptomics data
    Teng, Haotian
    Yuan, Ye
    Bar-Joseph, Ziv
    BIOINFORMATICS, 2022, 38 (04) : 997 - 1004
  • [10] A computational pipeline for spatial mechano-transcriptomics
    Hallou, Adrien
    He, Ruiyang
    Simons, Benjamin D.
    Dumitrascu, Bianca
    NATURE METHODS, 2025, 22 (04)