Coefficient bounds for q-convex functions related to q-Bernoulli numbers

被引:0
|
作者
Breaz, Daniel [1 ]
Orhan, Halit [2 ]
Arikan, Hava [2 ]
Cotirla, Luminita-Ioana [3 ]
机构
[1] 1 Decembrie 1918 Univ Alba Iulia, Dept Math, Alba Iulia, Romania
[2] Atatrk Univ, Dept Math, Fac Sci, TR-25240 Erzurum, Turkiye
[3] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca, Romania
关键词
Analytic and univalent functions; q-derivative; q-convex functions; q-Bernoulli numbers; Fekete-Szeg inequality; Hankel determinant; Q-STARLIKE FUNCTIONS; EULER;
D O I
10.2478/auom-2025-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to present and investigate a subclass C(b, q) of q-convex functions in the unit disk that is defined by the q-Bernoulli numbers. For this subclass, we find the upper bounds on the Fekete-Szeg functional, the coefficient bounds, and the second Hankel determinant.
引用
收藏
页码:77 / 92
页数:16
相关论文
共 50 条