COEFFICIENT BOUNDS FOR Q-STARLIKE FUNCTIONS ASSOCIATED WITH Q-BERNOULLI NUMBERS

被引:9
|
作者
Caglar, Murat [1 ]
Orhan, Halit [2 ]
Srivastava, Hari Mohan [3 ,4 ,5 ,6 ]
机构
[1] Erzurum Tech Univ, Fac Sci, Dept Math, TR-25100 Erzurum, Turkiye
[2] Ataturk Univ, Fac Sci, Dept Math, Turkiye, TR-25240 Erzurum, Turkiye
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[5] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[6] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
来源
关键词
Analytic and univalent functions; q-derivative; q-starlike func-tions; q-Bernoulli numbers; Fekete-Szego inequality; Hankel determinant; EULER;
D O I
10.11948/20220566
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper's main goal is to introduce and study a subclass S*(b, q) of q-starlike functions in the unit disk defined by the q-Bernoulli numbers. We determine the coefficient bounds, the upper bounds for the Fekete-Szego functional, and the second Hankel determinant for this subclass.
引用
收藏
页码:2354 / 2364
页数:11
相关论文
共 50 条
  • [1] Coefficient bounds for q-convex functions related to q-Bernoulli numbers
    Breaz, Daniel
    Orhan, Halit
    Arikan, Hava
    Cotirla, Luminita-Ioana
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2025, 33 (01): : 77 - 92
  • [2] Coefficient Bounds for Certain Subclasses of q-Starlike Functions
    Fan, Lin-Lin
    Wang, Zhi-Gang
    Khan, Shahid
    Hussain, Saqib
    Naeem, Muhammad
    Mahmood, Tahir
    MATHEMATICS, 2019, 7 (10)
  • [3] Coefficient inequality for q-starlike functions
    Ucar, H. Esra Ozkan
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 122 - 126
  • [4] Coefficient inequalities for q-starlike functions associated with the Janowski functions
    Srivastava, H. M.
    Khan, Bilal
    Khan, Nazar
    Ahmad, Qazi Zahoor
    HOKKAIDO MATHEMATICAL JOURNAL, 2019, 48 (02) : 407 - 425
  • [5] q-Bernoulli numbers and q-Bernoulli polynomials revisited
    Ryoo, Cheon Seoung
    Kim, Taekyun
    Lee, Byungje
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [6] q-Bernoulli numbers and q-Bernoulli polynomials revisited
    Cheon Seoung Ryoo
    Taekyun Kim
    Byungje Lee
    Advances in Difference Equations, 2011
  • [7] q-Bernoulli numbers associated with q-Stirling numbers
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2008,
  • [8] On q-starlike functions
    Piejko, Krzysztof
    Sokol, Janusz
    Trabka-Wieclaw, Katarzyna
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 186
  • [9] Sharp Coefficient Bounds for a New Subclass of q-Starlike Functions Associated with q-Analogue of the Hyperbolic Tangent Function
    Swarup, Chetan
    SYMMETRY-BASEL, 2023, 15 (03):
  • [10] Certain Coefficient Problems for q-Starlike Functions Associated with q-Analogue of Sine Function
    Taj, Yusra
    Zainab, Saira
    Xin, Qin
    Tawfiq, Ferdous M. O.
    Raza, Mohsan
    Malik, Sarfraz Nawaz
    SYMMETRY-BASEL, 2022, 14 (10):