COEFFICIENT BOUNDS FOR Q-STARLIKE FUNCTIONS ASSOCIATED WITH Q-BERNOULLI NUMBERS

被引:9
|
作者
Caglar, Murat [1 ]
Orhan, Halit [2 ]
Srivastava, Hari Mohan [3 ,4 ,5 ,6 ]
机构
[1] Erzurum Tech Univ, Fac Sci, Dept Math, TR-25100 Erzurum, Turkiye
[2] Ataturk Univ, Fac Sci, Dept Math, Turkiye, TR-25240 Erzurum, Turkiye
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[5] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[6] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
来源
关键词
Analytic and univalent functions; q-derivative; q-starlike func-tions; q-Bernoulli numbers; Fekete-Szego inequality; Hankel determinant; EULER;
D O I
10.11948/20220566
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper's main goal is to introduce and study a subclass S*(b, q) of q-starlike functions in the unit disk defined by the q-Bernoulli numbers. We determine the coefficient bounds, the upper bounds for the Fekete-Szego functional, and the second Hankel determinant for this subclass.
引用
收藏
页码:2354 / 2364
页数:11
相关论文
共 50 条
  • [41] A certain subclass of meromorphically q-starlike functions associated with the Janowski functions
    Shahid Mahmood
    Qazi Zahoor Ahmad
    H. M. Srivastava
    Nazar Khan
    Bilal Khan
    Muhammad Tahir
    Journal of Inequalities and Applications, 2019
  • [42] Some General Classes of q-Starlike Functions Associated with the Janowski Functions
    Srivastava, Hari M.
    Tahir, Muhammad
    Khan, Bilal
    Ahmad, Qazi Zahoor
    Khan, Nazar
    SYMMETRY-BASEL, 2019, 11 (02):
  • [43] q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series
    Srivastava, HM
    Kim, T
    Simsek, Y
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2005, 12 (02) : 241 - 268
  • [44] Duality on q-Starlike Functions Associated with Fractional q-Integral Operators and Applications
    Amini, Ebrahim
    Al-Omari, Shrideh
    Fardi, Mojtaba
    Nonlaopon, Kamsing
    SYMMETRY-BASEL, 2022, 14 (10):
  • [45] q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients
    Kim, T.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2008, 15 (01) : 51 - 57
  • [46] q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients
    T. Kim
    Russian Journal of Mathematical Physics, 2008, 15 : 51 - 57
  • [47] Majorization problems for class of q-starlike functions
    Mohammed, Nafya Hameed
    Adegani, Ebrahim Analouei
    AFRIKA MATEMATIKA, 2023, 34 (04)
  • [48] Certain Subclasses of Meromorphically q-Starlike Functions Associated with the q-Derivative Operators
    Srivastava, H. M.
    Tahir, M.
    Khan, B.
    Darus, M.
    Khan, N.
    Ahmad, Q. Z.
    UKRAINIAN MATHEMATICAL JOURNAL, 2022, 73 (09) : 1462 - 1477
  • [49] A note on Carlitz q-Bernoulli numbers and polynomials
    Daeyeoul Kim
    Min-Soo Kim
    Advances in Difference Equations, 2012
  • [50] Identities Involving q-Bernoulli and q-Euler Numbers
    Kim, D. S.
    Kim, T.
    Choi, J.
    Kim, Y. H.
    ABSTRACT AND APPLIED ANALYSIS, 2012,