Coefficient bounds for q-convex functions related to q-Bernoulli numbers

被引:0
|
作者
Breaz, Daniel [1 ]
Orhan, Halit [2 ]
Arikan, Hava [2 ]
Cotirla, Luminita-Ioana [3 ]
机构
[1] 1 Decembrie 1918 Univ Alba Iulia, Dept Math, Alba Iulia, Romania
[2] Atatrk Univ, Dept Math, Fac Sci, TR-25240 Erzurum, Turkiye
[3] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca, Romania
关键词
Analytic and univalent functions; q-derivative; q-convex functions; q-Bernoulli numbers; Fekete-Szeg inequality; Hankel determinant; Q-STARLIKE FUNCTIONS; EULER;
D O I
10.2478/auom-2025-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to present and investigate a subclass C(b, q) of q-convex functions in the unit disk that is defined by the q-Bernoulli numbers. For this subclass, we find the upper bounds on the Fekete-Szeg functional, the coefficient bounds, and the second Hankel determinant.
引用
收藏
页码:77 / 92
页数:16
相关论文
共 50 条
  • [31] CONTINUOUS Q-CONVEX EXHAUSTION FUNCTIONS
    PETERNELL, M
    INVENTIONES MATHEMATICAE, 1986, 85 (02) : 249 - 262
  • [32] COEFFICIENT INEQUALITIES FOR CLASSES OF q-STARLIKE AND q-CONVEX FUNCTIONS USING q-DERIVATIVE
    Nandini, P.
    Latha, S.
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2016, 15 (04): : 291 - 297
  • [33] A NOTE ON Q-ANALOGS OF THE DIRICHLET SERIES AND Q-BERNOULLI NUMBERS
    TSUMURA, H
    JOURNAL OF NUMBER THEORY, 1991, 39 (03) : 251 - 256
  • [34] Some results for the q-Bernoulli, q-Euler numbers and polynomials
    Kim, Daeyeoul
    Kim, Min-Soo
    ADVANCES IN DIFFERENCE EQUATIONS, 2011, : 1 - 16
  • [35] Some results for the q-Bernoulli, q-Euler numbers and polynomials
    Daeyeoul Kim
    Min-Soo Kim
    Advances in Difference Equations, 2011
  • [36] COEFFICIENT ESTIMATES OF NEW CLASSES OF q-STARLIKE AND q-CONVEX FUNCTIONS OF COMPLEX ORDER
    Seoudy, T. M.
    Aouf, M. K.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (01): : 135 - 145
  • [37] On modified degenerate Carlitz q-Bernoulli numbers and polynomials
    Jeong Gon Lee
    Lee-Chae Jang
    Advances in Difference Equations, 2017
  • [38] A Note on the Modified q-Bernoulli Numbers and Polynomials with Weight α
    Kim, T.
    Dolgy, D. V.
    Lee, S. H.
    Lee, B.
    Rim, S. H.
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [39] p-ADIC q-BERNOULLI NUMBERS AND THEIR DENOMINATORS
    Kamano, Ken
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (06) : 911 - 925
  • [40] On the Modified q-Bernoulli Numbers of Higher Order with Weight
    Kim, T.
    Choi, J.
    Kim, Y. -H.
    Rim, S. -H.
    ABSTRACT AND APPLIED ANALYSIS, 2012,