Coefficient bounds for q-convex functions related to q-Bernoulli numbers

被引:0
|
作者
Breaz, Daniel [1 ]
Orhan, Halit [2 ]
Arikan, Hava [2 ]
Cotirla, Luminita-Ioana [3 ]
机构
[1] 1 Decembrie 1918 Univ Alba Iulia, Dept Math, Alba Iulia, Romania
[2] Atatrk Univ, Dept Math, Fac Sci, TR-25240 Erzurum, Turkiye
[3] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca, Romania
关键词
Analytic and univalent functions; q-derivative; q-convex functions; q-Bernoulli numbers; Fekete-Szeg inequality; Hankel determinant; Q-STARLIKE FUNCTIONS; EULER;
D O I
10.2478/auom-2025-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to present and investigate a subclass C(b, q) of q-convex functions in the unit disk that is defined by the q-Bernoulli numbers. For this subclass, we find the upper bounds on the Fekete-Szeg functional, the coefficient bounds, and the second Hankel determinant.
引用
收藏
页码:77 / 92
页数:16
相关论文
共 50 条
  • [21] Sums of products of q-Bernoulli numbers
    Kim, T
    ARCHIV DER MATHEMATIK, 2001, 76 (03) : 190 - 195
  • [22] A note on Carlitz q-Bernoulli numbers and polynomials
    Daeyeoul Kim
    Min-Soo Kim
    Advances in Difference Equations, 2012
  • [23] Identities Involving q-Bernoulli and q-Euler Numbers
    Kim, D. S.
    Kim, T.
    Choi, J.
    Kim, Y. H.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [24] A NOTE ON q-BERNOULLI NUMBERS AND q-BERNSTEIN POLYNOMIALS
    Kim, Taekyun
    Ryoo, Cheon Seoung
    Yi, Heungsu
    ARS COMBINATORIA, 2012, 104 : 437 - 447
  • [25] A NOTE ON THE q-BERNOULLI NUMBERS AND q-BERNSTEIN POLYNOMIALS
    Park, Jin-Woo
    Pak, Hong Kyung
    Rim, Seog-Hoon
    Kim, Taekyun
    Lee, Sang-Hun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (04) : 722 - 729
  • [26] Sums of products of two q-Bernoulli numbers
    Satoh, J
    JOURNAL OF NUMBER THEORY, 1999, 74 (02) : 173 - 180
  • [27] A STUDY ON DEGENERATE q-BERNOULLI POLYNOMIALS AND NUMBERS
    Lee, Hui Young
    Yu, Chung Hyun
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2023, 41 (06): : 1303 - 1315
  • [28] Coefficient Inequalities for q-Convex Functions with Respect to q-Analogue of the Exponential Function
    Khan, Majid
    Khan, Nazar
    Tawfiq, Ferdous M. O.
    Ro, Jong-Suk
    AXIOMS, 2023, 12 (12)
  • [29] A note on Carlitz q-Bernoulli numbers and polynomials
    Kim, Daeyeoul
    Kim, Min-Soo
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [30] Q-BERNOULLI AND EULER NUMBERS OF HIGHER ORDER
    SHARMA, A
    DUKE MATHEMATICAL JOURNAL, 1958, 25 (02) : 343 - 353