On the action of the Weyl group on canonical bases

被引:0
|
作者
Gossow, Fern [1 ]
Yacobi, Oded [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, Australia
基金
澳大利亚研究理事会;
关键词
Weyl groups; Representation theory; Canonical bases; Categorification; HECKE ALGEBRAS; REPRESENTATIONS; CRYSTALS;
D O I
10.1007/s00209-025-03709-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study representations of simply-laced Weyl groups which are equipped with canonical bases. Our main result is that for a large class of representations, the separable elements of the Weyl group W act on these canonical bases by bijections up to lower-order terms. Examples of this phenomenon include the action of separable permutations on the Kazhdan-Lusztig basis of irreducible representations for the symmetric group, and the action of separable elements of W on dual canonical bases of weight zero in tensor product representations of a Lie algebra. Our methods arise from categorical representation theory, and in particular the study of the perversity of Rickard complexes acting on triangulated categories.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] CANONICAL BASES FOR CLUSTER ALGEBRAS
    Gross, Mark
    Hacking, Paul
    Keel, Sean
    Kontsevich, Maxim
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 31 (02) : 497 - 608
  • [42] FORKING, NORMALIZATION AND CANONICAL BASES
    PILLAY, A
    ANNALS OF PURE AND APPLIED LOGIC, 1986, 32 (01) : 61 - 81
  • [43] AFFINE QUIVERS AND CANONICAL BASES
    LUSZTIG, G
    PUBLICATIONS MATHEMATIQUES, 1992, (76): : 111 - 163
  • [44] Canonical bases for the quantum supergroups
    Du, Jie
    Gu, Haixia
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (3-4) : 631 - 660
  • [45] ON CANONICAL BASES AND INTERNALITY CRITERIA
    Moosa, Rahim
    Pillay, Anand
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (03) : 901 - 917
  • [46] Invariants of Weyl Group Action and q-characters of Quantum Affine Algebras
    Inoue, Rei
    Yamazaki, Takao
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (06) : 3167 - 3183
  • [47] Canonical dichotomous direct bases
    Rodriguez-Lorenzo, Estrella
    Cordero, Pablo
    Enciso, Manuel
    Mora, Angel
    INFORMATION SCIENCES, 2017, 376 : 39 - 53
  • [48] Decorated tangles and canonical bases
    Green, RM
    JOURNAL OF ALGEBRA, 2001, 246 (02) : 594 - 628
  • [49] Decomposition Numbers and Canonical Bases
    Leclerc B.
    Algebras and Representation Theory, 2000, 3 (03) : 277 - 287
  • [50] Canonical bases and standard monomials
    Marsh, RJ
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1998, 41 : 611 - 623