On the action of the Weyl group on canonical bases

被引:0
|
作者
Gossow, Fern [1 ]
Yacobi, Oded [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, Australia
基金
澳大利亚研究理事会;
关键词
Weyl groups; Representation theory; Canonical bases; Categorification; HECKE ALGEBRAS; REPRESENTATIONS; CRYSTALS;
D O I
10.1007/s00209-025-03709-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study representations of simply-laced Weyl groups which are equipped with canonical bases. Our main result is that for a large class of representations, the separable elements of the Weyl group W act on these canonical bases by bijections up to lower-order terms. Examples of this phenomenon include the action of separable permutations on the Kazhdan-Lusztig basis of irreducible representations for the symmetric group, and the action of separable elements of W on dual canonical bases of weight zero in tensor product representations of a Lie algebra. Our methods arise from categorical representation theory, and in particular the study of the perversity of Rickard complexes acting on triangulated categories.
引用
收藏
页数:37
相关论文
共 50 条
  • [31] Essential signatures and canonical bases of irreducible representations of the group G2
    A. A. Gornitskii
    Mathematical Notes, 2015, 97 : 30 - 41
  • [32] The Sandpile Group of a Trinity and a Canonical Definition for the Planar Bernardi Action
    Tamás Kálmán
    Seunghun Lee
    Lilla Tóthmérész
    Combinatorica, 2022, 42 : 1283 - 1316
  • [33] A new Weyl group action related to the quasi-classical Gelfand-Graev action
    Wang, Xiangsheng
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (03):
  • [34] The Sandpile Group of a Trinity and a Canonical Definition for the Planar Bernardi Action
    Kalman, Tamas
    Lee, Seunghun
    Tothmeresz, Lilla
    COMBINATORICA, 2022, 42 (SUPPL 2) : 1283 - 1316
  • [35] Rewriting as a Special Case of Noncommutative Grobner Bases Theory for the Affine Weyl Group ((A)over tilden)
    Cevik, A. Sinan
    Oezel, Cenap
    Karpuz, Eylem G.
    RING AND MODULE THEORY, 2010, : 73 - +
  • [36] Canonical bases in excellent classes
    Hyttinen, Tapani
    Lessmann, Olivier
    JOURNAL OF SYMBOLIC LOGIC, 2008, 73 (01) : 165 - 180
  • [37] Canonical comprehensive Grobner bases
    Weispfenning, V
    JOURNAL OF SYMBOLIC COMPUTATION, 2003, 36 (3-4) : 669 - 683
  • [38] Constructible characters and canonical bases
    Leclerc, B
    Miyachi, H
    JOURNAL OF ALGEBRA, 2004, 277 (01) : 298 - 317
  • [39] On the merge of factor canonical bases
    Valtchev, Petko
    Duquenne, Vincent
    FORMAL CONCEPT ANALYSIS, PROCEEDINGS, 2008, 4933 : 182 - +
  • [40] Invariants of Weyl Group Action and q-characters of Quantum Affine Algebras
    Rei Inoue
    Takao Yamazaki
    Algebras and Representation Theory, 2023, 26 : 3167 - 3183