On the action of the Weyl group on canonical bases

被引:0
|
作者
Gossow, Fern [1 ]
Yacobi, Oded [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, Australia
基金
澳大利亚研究理事会;
关键词
Weyl groups; Representation theory; Canonical bases; Categorification; HECKE ALGEBRAS; REPRESENTATIONS; CRYSTALS;
D O I
10.1007/s00209-025-03709-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study representations of simply-laced Weyl groups which are equipped with canonical bases. Our main result is that for a large class of representations, the separable elements of the Weyl group W act on these canonical bases by bijections up to lower-order terms. Examples of this phenomenon include the action of separable permutations on the Kazhdan-Lusztig basis of irreducible representations for the symmetric group, and the action of separable elements of W on dual canonical bases of weight zero in tensor product representations of a Lie algebra. Our methods arise from categorical representation theory, and in particular the study of the perversity of Rickard complexes acting on triangulated categories.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] Canonical bases and applications
    Littelmann, P
    ASTERISQUE, 1998, (252) : 287 - 306
  • [22] Double canonical bases
    Berenstein, Arkady
    Greenstein, Jacob
    ADVANCES IN MATHEMATICS, 2017, 316 : 381 - 468
  • [23] On dual canonical bases
    Zhang, HC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (32): : 7879 - 7893
  • [24] A canonical realization of the Weyl BMS symmetry
    Batlle, Carles
    Campello, Victor
    Gomis, Joaquim
    PHYSICS LETTERS B, 2020, 811
  • [25] On the Action of the Restricted Weyl Group on the Set of Orbits a Minimal Parabolic Subgroup
    V. S. Zhgoon
    F. Knop
    Doklady Mathematics, 2020, 101 : 25 - 29
  • [26] Birational Weyl group action arising from a nilpotent Poisson algebra
    Noumi, M
    Yamada, Y
    PHYSICS AND COMBINATORICS 1999, 2001, : 287 - 319
  • [27] On the Action of the Restricted Weyl Group on the Set of Orbits a Minimal Parabolic Subgroup
    Zhgoon, V. S.
    Knop, F.
    DOKLADY MATHEMATICS, 2020, 101 (01) : 25 - 29
  • [28] Canonical bases for the quantum group of type A(r) and piecewise-linear combinatorics
    Berenstein, A
    Zelevinsky, A
    DUKE MATHEMATICAL JOURNAL, 1996, 82 (03) : 473 - 502
  • [29] Canonical Quantization of a Massive Weyl Field
    Maxim Dvornikov
    Foundations of Physics, 2012, 42 : 1469 - 1479
  • [30] Canonical Quantization of a Massive Weyl Field
    Dvornikov, Maxim
    FOUNDATIONS OF PHYSICS, 2012, 42 (11) : 1469 - 1479