Interpretable machine learning for prostate biopsy: Cohort study.

被引:0
|
作者
Dai, Jindong
Zhao, Jinge
Shen, Pengfei
Zeng, Hao
机构
[1] Sichuan Univ, West China Hosp, Dept Urol, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp, Inst Urol, Chengdu, Peoples R China
关键词
D O I
10.1200/JCO.2025.43.5_suppl.333
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
333
引用
收藏
页码:333 / 333
页数:1
相关论文
共 50 条
  • [41] Axillary Recurrence after Negative Sentinel Lymphnode Biopsy: a Multicentre Cohort Study.
    van Wely, B. J.
    van den Wildenberg, F. H.
    Gobardhan, P. D.
    van Dalen, T.
    van der Pol, C. C.
    Wijsman, J. H.
    Ernst, M. F.
    Smidt, M.
    Rinkes, Borel I. H. M.
    Strobbe, L. J. A.
    CANCER RESEARCH, 2009, 69 (24) : 539S - 539S
  • [42] Prediction of prostate biopsy outcomes at different cut-offs of prostate-specific antigen using machine learning: a multicenter study
    Arafa, Mostafa A.
    Farhat, Karim H.
    Aly, Sherin F.
    Khan, Farrukh K.
    Mokhtar, Alaa
    Althunayan, Abdulaziz M.
    Al-Taweel, Waleed
    Al-Khateeb, Sultan S.
    Azhari, Sami
    Rabah, Danny M.
    JOURNAL OF THE EGYPTIAN NATIONAL CANCER INSTITUTE, 2025, 37 (01)
  • [43] Interpretable Machine Learning with Gradual Argumentation Frameworks
    Spieler, Jonathan
    Potyka, Nico
    Staab, Steffen
    COMPUTATIONAL MODELS OF ARGUMENT, COMMA 2022, 2022, 353 : 373 - 374
  • [44] Bayesian networks for interpretable machine learning and optimization
    Mihaljevic, Bojan
    Bielza, Concha
    Larranaga, Pedro
    NEUROCOMPUTING, 2021, 456 : 648 - 665
  • [45] Definitions, methods, and applications in interpretable machine learning
    Murdoch, W. James
    Singh, Chandan
    Kumbier, Karl
    Abbasi-Asl, Reza
    Yu, Bin
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (44) : 22071 - 22080
  • [46] Probabilistic scoring lists for interpretable machine learning
    Hanselle, Jonas
    Heid, Stefan
    Fuernkranz, Johannes
    Huellermeier, Eyke
    MACHINE LEARNING, 2025, 114 (03)
  • [47] Interpretable models for extrapolation in scientific machine learning
    Muckley, Eric S.
    Saal, James E.
    Meredig, Bryce
    Roper, Christopher S.
    Martin, John H.
    DIGITAL DISCOVERY, 2023, 2 (05): : 1425 - 1435
  • [48] A translucent box: interpretable machine learning in ecology
    Lucas, Tim C. D.
    ECOLOGICAL MONOGRAPHS, 2020, 90 (04)
  • [49] Leveraging interpretable machine learning in intensive care
    Bohlen, Lasse
    Rosenberger, Julian
    Zschech, Patrick
    Kraus, Mathias
    ANNALS OF OPERATIONS RESEARCH, 2024,
  • [50] Interpretable Machine Learning with Boosting by Boolean Algorithm
    Neuhaus, Nathan
    Kovalerchuk, Boris
    2019 JOINT 8TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR) WITH INTERNATIONAL CONFERENCE ON ACTIVITY AND BEHAVIOR COMPUTING (ABC), 2019, : 307 - 311