Interpretable machine learning for prostate biopsy: Cohort study.

被引:0
|
作者
Dai, Jindong
Zhao, Jinge
Shen, Pengfei
Zeng, Hao
机构
[1] Sichuan Univ, West China Hosp, Dept Urol, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp, Inst Urol, Chengdu, Peoples R China
关键词
D O I
10.1200/JCO.2025.43.5_suppl.333
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
333
引用
收藏
页码:333 / 333
页数:1
相关论文
共 50 条
  • [21] Interpretable machine learning for perturbation biology
    Shen, Judy
    Yuan, Bo
    Luna, Augustin
    Korkut, Anil
    Marks, Debora
    Ingraham, John
    Sander, Chris
    CANCER RESEARCH, 2020, 80 (16)
  • [22] Conceptual challenges for interpretable machine learning
    David S. Watson
    Synthese, 2022, 200
  • [23] Interpretable machine learning for materials design
    James Dean
    Matthias Scheffler
    Thomas A. R. Purcell
    Sergey V. Barabash
    Rahul Bhowmik
    Timur Bazhirov
    Journal of Materials Research, 2023, 38 : 4477 - 4496
  • [24] Interpretable Machine Learning Tools: A Survey
    Agarwal, Namita
    Das, Saikat
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1528 - 1534
  • [25] Interpretable discovery of semiconductors with machine learning
    Choubisa, Hitarth
    Todorovic, Petar
    Pina, Joao M. M.
    Parmar, Darshan H.
    Li, Ziliang
    Voznyy, Oleksandr
    Tamblyn, Isaac
    Sargent, Edward H.
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [26] Interpretable machine learning for materials design
    Dean, James
    Scheffler, Matthias
    Purcell, Thomas A. R.
    Barabash, Sergey V.
    Bhowmik, Rahul
    Bazhirov, Timur
    JOURNAL OF MATERIALS RESEARCH, 2023, 38 (20) : 4477 - 4496
  • [27] Interpretable Differencing of Machine Learning Models
    Haldar, Swagatam
    Saha, Diptikalyan
    Wei, Dennis
    Nair, Rahul
    Daly, Elizabeth M.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 788 - 797
  • [28] Conceptual challenges for interpretable machine learning
    Watson, David S.
    SYNTHESE, 2022, 200 (01)
  • [29] Predictive etiological classification of acute ischemic stroke through interpretable machine learning algorithms: a multicenter, prospective cohort study
    Chen, Siding
    Yang, Xiaomeng
    Gu, Hongqiu
    Wang, Yanzhao
    Xu, Zhe
    Jiang, Yong
    Wang, Yongjun
    BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [30] A Machine-Learning Model in Predicting Hemodynamically Significant Coronary Artery Disease: A Prospective Cohort Study.
    Liu Yan
    Dai Xuming
    Wolf, Hope
    Wade, Tyrone C.
    Stouffer, George A.
    CIRCULATION, 2018, 138