Interpretable machine learning for prostate biopsy: Cohort study.

被引:0
|
作者
Dai, Jindong
Zhao, Jinge
Shen, Pengfei
Zeng, Hao
机构
[1] Sichuan Univ, West China Hosp, Dept Urol, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp, Inst Urol, Chengdu, Peoples R China
关键词
D O I
10.1200/JCO.2025.43.5_suppl.333
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
333
引用
收藏
页码:333 / 333
页数:1
相关论文
共 50 条
  • [31] Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study
    Sun, Rao
    Li, Shiyong
    Wei, Yuna
    Hu, Liu
    Xu, Qiaoqiao
    Zhan, Gaofeng
    Yan, Xu
    He, Yuqin
    Wang, Yao
    Li, Xinhua
    Luo, Ailin
    Zhou, Zhiqiang
    INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (05) : 2950 - 2962
  • [32] Does prostate inflammation on a negative prostate biopsy vary by race? Results from the REDUCE study.
    Vidal, Adriana
    Howard, Lauren
    Moreira, Daniel
    Castro, Ramiro
    Andriole, Gerald L.
    Taioli, Emanuela
    Freedland, Stephen J.
    JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (02)
  • [33] Machine-Learning-Based Tool to Predict Target Prostate Biopsy Outcomes: An Internal Validation Study
    Checcucci, Enrico
    Rosati, Samanta
    De Cillis, Sabrina
    Giordano, Noemi
    Volpi, Gabriele
    Granato, Stefano
    Zamengo, Davide
    Verri, Paolo
    Amparore, Daniele
    De Luca, Stefano
    Manfredi, Matteo
    Fiori, Cristian
    Di Dio, Michele
    Balestra, Gabriella
    Porpiglia, Francesco
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (13)
  • [34] Interpretable Machine Learning - An Application Study Using the Munich Rent Index
    Brosig, Julia
    3RD INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH METHODS AND ANALYTICS (CARMA 2020), 2020, : 340 - 340
  • [35] Interpretable Machine Learning Model for Predicting Postpartum Depression: Retrospective Study
    Zhang, Ren
    Liu, Yi
    Zhang, Zhiwei
    Luo, Rui
    Lv, Bin
    JMIR MEDICAL INFORMATICS, 2025, 13
  • [36] Prostate Cancer Biopsy Recommendation through Use of Machine Learning Classification Techniques
    Del Grossi, Andre A.
    de Mattos Senefonte, Helen C.
    Quaglio, Vinicius G.
    ADVANCES IN ARTIFICIAL INTELLIGENCE (IBERAMIA 2014), 2014, 8864 : 710 - 721
  • [37] Identification of prognostic signatures in remnant gastric cancer through an interpretable risk model based on machine learning: a multicenter cohort study
    Zhan, Zhouwei
    Chen, Bijuan
    Cheng, Hui
    Xu, Shaohua
    Huang, Chunping
    Zhou, Sijing
    Chen, Haiting
    Lin, Xuanping
    Lin, Ruyu
    Huang, Wanting
    Ma, Xiaohuan
    Fu, Yu
    Chen, Zhipeng
    Zheng, Hanchen
    Shi, Songchang
    Guo, Zengqing
    Zhang, Lihui
    BMC CANCER, 2024, 24 (01)
  • [38] Consumption of alcoholic beverages and prostate cancer risk in the Netherlands Cohort Study.
    Schuurman, AG
    Goldbohm, RA
    van den Brandt, PA
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 1998, 147 (11) : S6 - S6
  • [39] Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study
    Li, Jili
    Liu, Siru
    Hu, Yundi
    Zhu, Lingfeng
    Mao, Yujia
    Liu, Jialin
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (08)
  • [40] Interpretable machine learning model to predict the acute occurrence of delirium in elderly patients in the intensive care units: a retrospective cohort study
    Hu, Xin
    Luo, Jun
    Liang, Hong
    Yue, Jingwei
    Qi, Yeqing
    Liu, Hui
    JOURNAL OF BIG DATA, 2025, 12 (01)