Almost Ricci-Yamabe Solitons in f-Kenmotsu Manifolds

被引:0
|
作者
Shivaprasanna, G. S. [1 ]
Rajendra, R. [2 ]
Reddy, P. Siva Kota [3 ]
Somashekhara, G. [4 ]
Pavithra, M. [5 ]
机构
[1] Dr Ambedkar Inst Technol, Dept Math, Bengaluru 560056, India
[2] Mangalore Univ, Field Marshal KM Cariappa Coll, Dept Math, Madikeri 571201, India
[3] JSS Sci & Technol Univ, Sri Jayachamarajendra Coll Engn, Dept Math, Mysuru 570006, India
[4] MS Ramaiah Univ Appl Sci, Dept Math & Statiat, Bengaluru 560058, India
[5] Karnataka State Open Univ, Dept Studies Math, Mysuru 570006, India
关键词
f-Kenmotsu manifold; Ricci-Yamabe soliton; Gradient Ricci-Yamabe soliton;
D O I
10.5269/bspm.69758
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to charecterize f-Kenmotsu manifolds admitting almost RicciYamabe soliton and gradient Ricci-Yamabe soliton. We deduce the ncessary condition for the potential function u is constant. Further, a relation between lambda and the potential function u has been established. Finally, a sufficient condition is proved for a Ricci-Yamabe soliton to be a gradient Ricci-Yamabe soliton and a characterization of the soliton in terms of shrinking, steady or expanding has been done.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] η-Ricci--Yamabe and *-η-Ricci--Yamabe solitons in Lorentzian para-Kenmotsu manifolds
    Prasad, Rajendra
    Haseeb, Abdul
    Kumar, Vinay
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (04): : 375 - 384
  • [42] 3-Dimensional f-Kenmotsu manifolds and solitons
    Sardar, Arpan
    De Chand, Uday
    Najafi, Behzad
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (13)
  • [43] On *-Conformal Ricci Solitons on a Class of Almost Kenmotsu Manifolds
    Majhi, Pradip
    Dey, Dibakar
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (04): : 781 - 790
  • [44] Ricci solitons on almost Kenmotsu 3-manifolds
    Wang, Yaning
    OPEN MATHEMATICS, 2017, 15 : 1236 - 1243
  • [45] A study of conformal almost Ricci solitons on Kenmotsu manifolds
    Sarkar, Sumanjit
    Dey, Santu
    Bhattacharyya, Arindam
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (04)
  • [46] YAMABE SOLITONS ON KENMOTSU MANIFOLDS
    Hui, Shyamal Kumar
    Mandal, Yadab Chandra
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (01): : 321 - 331
  • [47] GRADIENT RICCI ALMOST SOLITONS ON TWO CLASSES OF ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (05) : 1101 - 1114
  • [48] CERTAIN RESULTS OF RICCI-YAMABE SOLITONS ON (LCS)N-MANIFOLDS
    Singh, Jay Prakash
    Zosangzuala, Chhakchhuak
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (04): : 797 - 812
  • [49] Yamabe Solitons and Ricci Solitons on Almost co-Kahler Manifolds
    Suh, Young Jin
    De, Uday Chand
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (03): : 653 - 661
  • [50] Geometry of almost contact metrics as a *-conformal Ricci-Yamabe solitons and related results
    Dey, Santu
    Roy, Soumendu
    Karaca, Fatma
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (09)