Almost Ricci-Yamabe Solitons in f-Kenmotsu Manifolds

被引:0
|
作者
Shivaprasanna, G. S. [1 ]
Rajendra, R. [2 ]
Reddy, P. Siva Kota [3 ]
Somashekhara, G. [4 ]
Pavithra, M. [5 ]
机构
[1] Dr Ambedkar Inst Technol, Dept Math, Bengaluru 560056, India
[2] Mangalore Univ, Field Marshal KM Cariappa Coll, Dept Math, Madikeri 571201, India
[3] JSS Sci & Technol Univ, Sri Jayachamarajendra Coll Engn, Dept Math, Mysuru 570006, India
[4] MS Ramaiah Univ Appl Sci, Dept Math & Statiat, Bengaluru 560058, India
[5] Karnataka State Open Univ, Dept Studies Math, Mysuru 570006, India
关键词
f-Kenmotsu manifold; Ricci-Yamabe soliton; Gradient Ricci-Yamabe soliton;
D O I
10.5269/bspm.69758
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to charecterize f-Kenmotsu manifolds admitting almost RicciYamabe soliton and gradient Ricci-Yamabe soliton. We deduce the ncessary condition for the potential function u is constant. Further, a relation between lambda and the potential function u has been established. Finally, a sufficient condition is proved for a Ricci-Yamabe soliton to be a gradient Ricci-Yamabe soliton and a characterization of the soliton in terms of shrinking, steady or expanding has been done.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Ricci-Yamabe Solitons in f (R)-gravity
    De, Krishnendu
    De, Uday Chand
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 334 - 342
  • [32] GRADIENT RICCI SOLITONS ON ALMOST KENMOTSU MANIFOLDS
    Wang, Yaning
    De, Uday Chand
    Liu, Ximin
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 227 - 235
  • [33] Conformal η-Ricci almost solitons of Kenmotsu manifolds
    Dey, Santu
    Uddin, Siraj
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2022, 19 (08)
  • [34] k-ALMOST YAMABE SOLITONS ON KENMOTSU MANIFOLDS
    De, Krishnendu
    De, Uday Chand
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 115 - 122
  • [35] CERTAIN RESULTS ON THREE-DIMENSIONAL f-KENMOTSU MANIFOLDS WITH CONFORMAL RICCI SOLITONS
    Mandal, Tarak
    KOREAN JOURNAL OF MATHEMATICS, 2022, 30 (01): : 1 - 10
  • [36] ( α,β )- TYPE ALMOST η-RICCI-YAMABE SOLITONS IN PERFECT FLUID SPACETIME
    Pandey, S.
    Mert, T.
    Atceken, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2024, 93 (03): : 171 - 183
  • [37] Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds
    De, Uday Chand
    Sardar, Arpan
    De, Krishnendu
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) : 1078 - 1088
  • [38] h-Almost Ricci-Yamabe Solitons in Paracontact Geometry
    De, Uday Chand
    Khan, Mohammad Nazrul Islam
    Sardar, Arpan
    MATHEMATICS, 2022, 10 (18)
  • [39] Ricci almost solitons on Concircular Ricci pseudosymmetric β-Kenmotsu manifolds
    Hui, Shyamal Kumar
    Chakraborty, Debabrata
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (03): : 579 - 587
  • [40] On Gradient Ricci-Yamabe Solitons
    Karaca, Fatma
    Guler, Sinem
    IRANIAN JOURNAL OF SCIENCE, 2025,