Almost Ricci-Yamabe Solitons in f-Kenmotsu Manifolds

被引:0
|
作者
Shivaprasanna, G. S. [1 ]
Rajendra, R. [2 ]
Reddy, P. Siva Kota [3 ]
Somashekhara, G. [4 ]
Pavithra, M. [5 ]
机构
[1] Dr Ambedkar Inst Technol, Dept Math, Bengaluru 560056, India
[2] Mangalore Univ, Field Marshal KM Cariappa Coll, Dept Math, Madikeri 571201, India
[3] JSS Sci & Technol Univ, Sri Jayachamarajendra Coll Engn, Dept Math, Mysuru 570006, India
[4] MS Ramaiah Univ Appl Sci, Dept Math & Statiat, Bengaluru 560058, India
[5] Karnataka State Open Univ, Dept Studies Math, Mysuru 570006, India
关键词
f-Kenmotsu manifold; Ricci-Yamabe soliton; Gradient Ricci-Yamabe soliton;
D O I
10.5269/bspm.69758
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to charecterize f-Kenmotsu manifolds admitting almost RicciYamabe soliton and gradient Ricci-Yamabe soliton. We deduce the ncessary condition for the potential function u is constant. Further, a relation between lambda and the potential function u has been established. Finally, a sufficient condition is proved for a Ricci-Yamabe soliton to be a gradient Ricci-Yamabe soliton and a characterization of the soliton in terms of shrinking, steady or expanding has been done.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Almost Kenmotsu (k, μ)′-manifolds with Yamabe solitons
    Wang, Yaning
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
  • [22] *-RICCI SOLITONS AND GRADIENT ALMOST *-RICCI SOLITONS ON KENMOTSU MANIFOLDS
    Venkatesha
    Naik, Devaraja Mallesha
    Kumara, H. Aruna
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1447 - 1458
  • [23] Estimation of Almost Ricci-Yamabe Solitons on Static Spacetimes
    Siddiqi, Mohd Danish
    De, Uday Chand
    Deshmukh, Sharief
    FILOMAT, 2022, 36 (02) : 397 - 407
  • [24] Characterization of Almost η-Ricci–Yamabe Soliton and Gradient Almost η-Ricci–Yamabe Soliton on Almost Kenmotsu Manifolds
    Somnath Mondal
    Santu Dey
    Arindam Bhattacharyya
    Acta Mathematica Sinica, English Series, 2023, 39 : 728 - 748
  • [25] Characterization of Almost η-Ricci–Yamabe Soliton and Gradient Almost η-Ricci–Yamabe Soliton on Almost Kenmotsu Manifolds
    Somnath MONDAL
    Santu DEY
    Arindam BHATTACHARYYA
    ActaMathematicaSinica,EnglishSeries, 2023, (04) : 728 - 748
  • [26] Riemannian manifolds in three dimensions and ∗- η-Ricci-Yamabe solitons
    Nagaraja, H. G.
    Pavithra, R. C.
    Sangeetha, M.
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2024, 17 (04): : 181 - 193
  • [27] Conformal Ricci-Yamabe solitons on warped product manifolds
    Singh, Jay Prakash
    Sumlalsanga, Robert
    FILOMAT, 2024, 38 (11) : 3791 - 3802
  • [28] Riemannian 3-manifolds and Ricci-Yamabe solitons
    Haseeb, Abdul
    Chaubey, Sudhakar K.
    Khan, Meraj Ali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (01)
  • [29] Curvature properties of α-cosymplectic manifolds with ∗-η-Ricci-Yamabe solitons
    Vandana
    Budhiraja, Rajeev
    Diop, Aliya Naaz Siddiqui
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (01): : 91 - 105
  • [30] Gradient Ricci-Yamabe solitons on warped product manifolds
    Karaca, Fatma
    FILOMAT, 2023, 37 (07) : 2199 - 2207