Stability and Zero-Hopf Bifurcation Analysis of the Lorenz-Stenflo System Using Symbolic Methods

被引:0
|
作者
Huang, Bo [1 ]
Li, Xiaoliang [2 ]
Niu, Wei [3 ,4 ]
Xie, Shaofen [5 ]
机构
[1] Beihang Univ, LMIB Sch Math Sci, Beijing 100191, Peoples R China
[2] Guangzhou Coll Technol & Business, Sch Business, Guangzhou 510850, Peoples R China
[3] Beihang Univ, Ecole Cent Pekin, Beijing 100191, Peoples R China
[4] Beihang Hangzhou Innovat Inst Yuhang, Hangzhou 310051, Peoples R China
[5] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Averaging method; Limit cycle; Symbolic computation; Stability; Zero-Hopf bifurcation; ATTRACTORS;
D O I
10.1007/978-3-031-41724-5_10
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper deals with the stability and zero-Hopf bifurcation of the Lorenz-Stenflo system by using methods of symbolic computation. Stability conditions on the parameters of the system are derived by using methods of solving semi-algebraic systems. Using the method of algorithmic averaging, we provide sufficient conditions for the existence of one limit cycle bifurcating from a zero-Hopf equilibrium of the Lorenz-Stenflo system. Some examples are presented to verify the established results.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 50 条
  • [41] Zero-Hopf bifurcation in the Volterra-Gause system of predator-prey type
    Ginoux, Jean-Marc
    Llibre, Jaume
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7858 - 7866
  • [42] Zero-Hopf bifurcation analysis of a Kaldor-Kalecki model of business cycle with delay
    Wu, Xiaoqin P.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) : 736 - 754
  • [43] Nonlinear Dynamic Analysis and Synchronization of Four-Dimensional Lorenz-Stenflo System and Its Circuit Experimental Implementation
    Yang, Cheng-Hsiung
    Wu, Cheng-Lin
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [44] STABILITY AND ZERO-HOPF BIFURCATION ANALYSIS OF A TUMOUR AND T-HELPER CELLS INTERACTION MODEL IN THE CASE OF HIV INFECTION
    Karahisarli, Gamzegul
    Merdan, Huseyin
    Tridane, Abdessamad
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (02) : 911 - 937
  • [45] Analysis of the T-point-Hopf bifurcation in the Lorenz system
    Algaba, A.
    Fernandez-Sanchez, F.
    Merino, M.
    Rodriguez-Luis, A. J.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 676 - 691
  • [46] Hopf bifurcation analysis and amplitude control of the modified Lorenz system
    Wang, Xuedi
    Deng, Lianwang
    Zhang, Wenli
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 : 333 - 344
  • [47] ZERO-HOPF BIFURCATION ANALYSIS FOR A KRAWIEC-SZYDLOWSKI MODEL OF BUSINESS CYCLES WITH TWO DELAYS
    Wang, Liancheng
    Wu, Xiaoqin P.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2014, 23 (04): : 531 - 560
  • [48] A 4D hyperchaotic Lorenz-type system: zero-Hopf bifurcation, ultimate bound estimation, and its variable-order fractional network
    Yuxi Li
    Zhouchao Wei
    Ayman A. Aly
    The European Physical Journal Special Topics, 2022, 231 : 1847 - 1858
  • [49] A 4D hyperchaotic Lorenz-type system: zero-Hopf bifurcation, ultimate bound estimation, and its variable-order fractional network
    Li, Yuxi
    Wei, Zhouchao
    Aly, Ayman A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (10): : 1847 - 1858
  • [50] Hopf Bifurcation Analysis and Control of a New Lorenz-like System
    Zhang Zhonghua
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 1597 - 1601