Stability and Zero-Hopf Bifurcation Analysis of the Lorenz-Stenflo System Using Symbolic Methods

被引:0
|
作者
Huang, Bo [1 ]
Li, Xiaoliang [2 ]
Niu, Wei [3 ,4 ]
Xie, Shaofen [5 ]
机构
[1] Beihang Univ, LMIB Sch Math Sci, Beijing 100191, Peoples R China
[2] Guangzhou Coll Technol & Business, Sch Business, Guangzhou 510850, Peoples R China
[3] Beihang Univ, Ecole Cent Pekin, Beijing 100191, Peoples R China
[4] Beihang Hangzhou Innovat Inst Yuhang, Hangzhou 310051, Peoples R China
[5] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Averaging method; Limit cycle; Symbolic computation; Stability; Zero-Hopf bifurcation; ATTRACTORS;
D O I
10.1007/978-3-031-41724-5_10
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper deals with the stability and zero-Hopf bifurcation of the Lorenz-Stenflo system by using methods of symbolic computation. Stability conditions on the parameters of the system are derived by using methods of solving semi-algebraic systems. Using the method of algorithmic averaging, we provide sufficient conditions for the existence of one limit cycle bifurcating from a zero-Hopf equilibrium of the Lorenz-Stenflo system. Some examples are presented to verify the established results.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 50 条
  • [21] Zero-Hopf bifurcation in a 3D jerk system
    Braun, Francisco
    Mereu, Ana C.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
  • [22] Bursting dynamics and the zero-Hopf bifurcation of simple jerk system
    Sun, Xi
    Yan, Shaohui
    Zhang, Yuyan
    Wang, Ertong
    Wang, Qiyu
    Gu, Binxian
    CHAOS SOLITONS & FRACTALS, 2022, 162
  • [23] On the integrability and the zero-Hopf bifurcation of a Chen–Wang differential system
    Jaume Llibre
    Regilene D. S. Oliveira
    Claudia Valls
    Nonlinear Dynamics, 2015, 80 : 353 - 361
  • [24] Analysis and stabilization of nonlinear systems with a zero-Hopf control bifurcation
    Hamzi, B
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 3912 - 3917
  • [25] On the integrability and the zero-Hopf bifurcation of a Chen-Wang differential system
    Llibre, Jaume
    Oliveira, Regilene D. S.
    Valls, Claudia
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 353 - 361
  • [26] Analysis of Zero-Hopf Bifurcation in Two Rossler Systems Using Normal Form Theory
    Zeng, Bing
    Yu, Pei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (16):
  • [27] Stability and Hopf bifurcation of a Lorenz-like system
    Wu, Ranchao
    Fang, Tianbao
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 262 : 335 - 343
  • [28] Zero-Hopf bifurcation analysis in delayed differential equations with two delays
    Wu, Xiaoqin P.
    Wang, Liancheng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (03): : 1484 - 1513
  • [29] Hopf Bifurcation Analysis of a Modified Lorenz System
    Tee, Loong Soon
    Salleh, Zabidin
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 158 - 167
  • [30] Zero-Hopf bifurcation analysis in an inertial two-neural system with delayed Crespi function
    Yingying Li
    Li Xiao
    Zhouchao Wei
    Wei Zhang
    The European Physical Journal Special Topics, 2020, 229 : 953 - 962