Data Augmentation in Latent Space with Variational Autoencoder and Pretrained Image Model for Visual Reinforcement Learning

被引:0
|
作者
Dang, Xuzhe [1 ]
Edelkamp, Stefan [1 ]
机构
[1] Czech Tech Univ, Prague, Czech Republic
关键词
Visual Reinforcement Learning; Deep Learning; Representation Learning;
D O I
10.1007/978-3-031-70893-0_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we investigate alternative data augmentation strategies for Visual Reinforcement Learning and explore the potential benefits of fine-tuning a pretrained image encoder to enhance the learning process. We propose an innovative approach that applies data augmentation in the latent space, rather than directly manipulating pixel values. This method utilizes a Variational Autoen- coder, integrated with a pretrained image model, to facilitate the data augmentation process in a more abstract and feature-rich latent space. We use the DeepMind Control suite as a benchmark to evaluate the impact of our approach.
引用
收藏
页码:45 / 59
页数:15
相关论文
共 50 条
  • [1] Balanced incremental deep reinforcement learning based on variational autoencoder data augmentation for customer credit scoring
    Wang, Yadong
    Jia, Yanlin
    Zhong, Yu
    Huang, Jing
    Xiao, Jin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122
  • [2] Remote sensing image captioning via Variational Autoencoder and Reinforcement Learning
    Shen, Xiangqing
    Liu, Bing
    Zhou, Yong
    Zhao, Jiaqi
    Liu, Mingming
    KNOWLEDGE-BASED SYSTEMS, 2020, 203
  • [3] Visual Servoing in Autoencoder Latent Space
    Felton, Samuel
    Brault, Pascal
    Fromont, Elisa
    Marchand, Eric
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 3234 - 3241
  • [4] Variational Autoencoder for Image-Based Augmentation of Eye-Tracking Data
    Elbattah, Mahmoud
    Loughnane, Colm
    Guerin, Jean-Luc
    Carette, Romuald
    Cilia, Federica
    Dequen, Gilles
    JOURNAL OF IMAGING, 2021, 7 (05)
  • [5] Crash data augmentation using variational autoencoder
    Islam, Zubayer
    Abdel-Aty, Mohamed
    Cai, Qing
    Yuan, Jinghui
    ACCIDENT ANALYSIS AND PREVENTION, 2021, 151
  • [6] Different Latent Variables Learning in Variational Autoencoder
    Xu, Qingyang
    Yang, Yiqin
    Wu, Zhe
    Zhang, Li
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION, CYBERNETICS AND COMPUTATIONAL SOCIAL SYSTEMS (ICCSS), 2017, : 508 - 511
  • [7] The Dreaming Variational Autoencoder for Reinforcement Learning Environments
    Andersen, Per-Arne
    Goodwin, Morten
    Granmo, Ole-Christoffer
    ARTIFICIAL INTELLIGENCE XXXV (AI 2018), 2018, 11311 : 143 - 155
  • [8] Latent Space Expanded Variational Autoencoder for Sentence Generation
    Song, Tianbao
    Sun, Jingbo
    Chen, Bo
    Peng, Weiming
    Song, Jihua
    IEEE ACCESS, 2019, 7 : 144618 - 144627
  • [9] Data Augmentation via Latent Space Interpolation for Image Classification
    Liu, Xiaofeng
    Zou, Yang
    Kong, Lingsheng
    Diao, Zhihui
    Yan, Junliang
    Wang, Jun
    Li, Site
    Jia, Ping
    You, Jane
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 728 - 733
  • [10] Autoencoder Image Interpolation by Shaping the Latent Space
    Oring, Alon
    Yakhini, Zohar
    Hel-Or, Yacov
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139