Data Augmentation in Latent Space with Variational Autoencoder and Pretrained Image Model for Visual Reinforcement Learning

被引:0
|
作者
Dang, Xuzhe [1 ]
Edelkamp, Stefan [1 ]
机构
[1] Czech Tech Univ, Prague, Czech Republic
关键词
Visual Reinforcement Learning; Deep Learning; Representation Learning;
D O I
10.1007/978-3-031-70893-0_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we investigate alternative data augmentation strategies for Visual Reinforcement Learning and explore the potential benefits of fine-tuning a pretrained image encoder to enhance the learning process. We propose an innovative approach that applies data augmentation in the latent space, rather than directly manipulating pixel values. This method utilizes a Variational Autoen- coder, integrated with a pretrained image model, to facilitate the data augmentation process in a more abstract and feature-rich latent space. We use the DeepMind Control suite as a benchmark to evaluate the impact of our approach.
引用
收藏
页码:45 / 59
页数:15
相关论文
共 50 条
  • [41] Radio Galaxy Zoo: Leveraging latent space representations from variational autoencoder
    Andrianomena, Sambatra
    Tang, Hongming
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (06):
  • [42] Robust unsupervised image categorization based on variational autoencoder with disentangled latent representations
    Yang, Lin
    Fan, Wentao
    Bouguila, Nizar
    KNOWLEDGE-BASED SYSTEMS, 2022, 246
  • [43] Reinforcement Learning in Latent Action Sequence Space
    Kim, Heecheol
    Yamada, Masanori
    Miyoshi, Kosuke
    Iwata, Tomoharu
    Yamakawa, Hiroshi
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 5497 - 5503
  • [44] Latent Space Policies for Hierarchical Reinforcement Learning
    Haarnoja, Tuomas
    Hartikainen, Kristian
    Abbeel, Pieter
    Levine, Sergey
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [45] A latent space method with maximum entropy deep reinforcement learning for data assimilation
    Zhang, Jinding
    Zhang, Kai
    Wang, Zhongzheng
    Zhou, Wensheng
    Liu, Chen
    Zhang, Liming
    Ma, Xiaopeng
    Liu, Piyang
    Bian, Ziwei
    Kang, Jinzheng
    Yang, Yongfei
    Yao, Jun
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 243
  • [46] Image forgery detection by combining Visual Transformer with Variational Autoencoder Network
    Atak, Ilker Galip
    Yasar, Ali
    APPLIED SOFT COMPUTING, 2024, 165
  • [47] Developing a Conditional Variational Autoencoder to Guide Spectral Data Augmentation for Calibration Modeling
    Mu, Guoqing
    Chen, Junghui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [48] Data Augmentation for Knowledge Tracing Based on Variational AutoEncoder and Efficient Network Reusing
    Zhao, Hui
    Sun, Jun
    WEB AND BIG DATA, APWEB-WAIM 2024, PT V, 2024, 14965 : 271 - 285
  • [49] Latent Space Bayesian Optimization With Latent Data Augmentation for Enhanced Exploration
    Boyar, Onur
    Takeuchi, Ichiro
    NEURAL COMPUTATION, 2024, 36 (11) : 2446 - 2478
  • [50] Improving Deep Learning for Maritime Remote Sensing through Data Augmentation and Latent Space
    Sobien, Daniel
    Higgins, Erik
    Krometis, Justin
    Kauffman, Justin
    Freeman, Laura
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2022, 4 (03): : 665 - 687