Data Augmentation in Latent Space with Variational Autoencoder and Pretrained Image Model for Visual Reinforcement Learning

被引:0
|
作者
Dang, Xuzhe [1 ]
Edelkamp, Stefan [1 ]
机构
[1] Czech Tech Univ, Prague, Czech Republic
关键词
Visual Reinforcement Learning; Deep Learning; Representation Learning;
D O I
10.1007/978-3-031-70893-0_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we investigate alternative data augmentation strategies for Visual Reinforcement Learning and explore the potential benefits of fine-tuning a pretrained image encoder to enhance the learning process. We propose an innovative approach that applies data augmentation in the latent space, rather than directly manipulating pixel values. This method utilizes a Variational Autoen- coder, integrated with a pretrained image model, to facilitate the data augmentation process in a more abstract and feature-rich latent space. We use the DeepMind Control suite as a benchmark to evaluate the impact of our approach.
引用
收藏
页码:45 / 59
页数:15
相关论文
共 50 条
  • [21] Efficiency of Reinforcement Learning using Polarized Regime by Variational Autoencoder
    Nakai, Masato
    Shibuya, Takeshi
    2022 61ST ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS (SICE), 2022, : 128 - 134
  • [22] Banner layout retargeting with hierarchical reinforcement learning and variational autoencoder
    Hao Hu
    Chao Zhang
    Yanxue Liang
    Multimedia Tools and Applications, 2022, 81 : 34417 - 34438
  • [23] Unsupervised White Blood Cell characterization in the latent space of a Variational Autoencoder
    Tarquino, Jonathan
    Romero, Eduardo
    18TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2023, 12567
  • [24] Banner layout retargeting with hierarchical reinforcement learning and variational autoencoder
    Hu, Hao
    Zhang, Chao
    Liang, Yanxue
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (24) : 34417 - 34438
  • [25] Protein Ensemble Generation Through Variational Autoencoder Latent Space Sampling
    Mansoor, Sanaa
    Baek, Minkyung
    Park, Hahnbeom
    Lee, Gyu Rie
    Baker, David
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (07) : 2689 - 2695
  • [26] Cooperative Training and Latent Space Data Augmentation for Robust Medical Image Segmentation
    Chen, Chen
    Hammernik, Kerstin
    Ouyang, Cheng
    Qin, Chen
    Bai, Wenjia
    Rueckert, Daniel
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 149 - 159
  • [27] A Network Data Reinforcement Method Based on the Multiclass Variational Autoencoder
    Qu, Yanze
    Ma, Hailong
    Jiang, Yiming
    Wang, Liang
    Yu, Jing
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [28] A Network Data Reinforcement Method Based on the Multiclass Variational Autoencoder
    Qu, Yanze
    Ma, Hailong
    Jiang, Yiming
    Wang, Liang
    Yu, Jing
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [29] CLINICALLY RELEVANT LATENT SPACE EMBEDDING OF CANCER HISTOPATHOLOGY SLIDES THROUGH VARIATIONAL AUTOENCODER BASED IMAGE COMPRESSION
    Nasr, Mohammad Sadegh
    Hajighasemi, Amir
    Koomey, Paul
    Malidarreh, Parisa Boodaghi
    Robben, Michael
    Saurav, Jillur Rahman
    Shang, Helen H.
    Huber, Manfred
    Luber, Jacob M.
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [30] Variational Hierarchical Dialog Autoencoder for Dialog State Tracking Data Augmentation
    Yoo, Kang Min
    Lee, Hanbit
    Dernoncourt, Franck
    Bui, Trung
    Chang, Walter
    Lee, Sang-Goo
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 3406 - 3425