Autoencoder Image Interpolation by Shaping the Latent Space

被引:0
|
作者
Oring, Alon [1 ]
Yakhini, Zohar [1 ]
Hel-Or, Yacov [1 ]
机构
[1] Interdisciplinary Ctr, Sch Comp Sci, Herzliyya, Israel
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autoencoders represent an effective approach for computing the underlying factors characterizing datasets of different types. The latent representation of autoencoders have been studied in the context of enabling interpolation between data points by decoding convex combinations of latent vectors. This interpolation, however, often leads to artifacts or produces unrealistic results during reconstruction. We argue that these incongruities are due to the structure of the latent space and because such naively interpolated latent vectors deviate from the data manifold. In this paper, we propose a regularization technique that shapes the latent representation to follow a manifold that is consistent with the training images and that drives the manifold to be smooth and locally convex. This regularization not only enables faithful interpolation between data points, as we show herein, but can also be used as a general regularization technique to avoid overfitting or to produce new samples for data augmentation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Homomorphic Latent Space Interpolation for Unpaired Image-To-Image Translation
    Chen, Ying-Cong
    Xu, Xiaogang
    Tian, Zhuotao
    Jia, Jiaya
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2403 - 2411
  • [2] Data Augmentation via Latent Space Interpolation for Image Classification
    Liu, Xiaofeng
    Zou, Yang
    Kong, Lingsheng
    Diao, Zhihui
    Yan, Junliang
    Wang, Jun
    Li, Site
    Jia, Ping
    You, Jane
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 728 - 733
  • [3] Visual Servoing in Autoencoder Latent Space
    Felton, Samuel
    Brault, Pascal
    Fromont, Elisa
    Marchand, Eric
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 3234 - 3241
  • [4] Autoencoder latent space: an empirical study
    Lapenda, Leticia V. N.
    Monteiro, Rodrigo P.
    Bastos-Filho, Carmelo J. A.
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2453 - 2460
  • [5] RAY SPACE TRANSFORM INTERPOLATION WITH CONVOLUTIONAL AUTOENCODER
    Comanducci, L.
    Borra, F.
    Bestagini, P.
    Antonacci, F.
    Sarti, A.
    Tubaro, S.
    2018 16TH INTERNATIONAL WORKSHOP ON ACOUSTIC SIGNAL ENHANCEMENT (IWAENC), 2018, : 261 - 265
  • [6] Optimization of physical quantities in the autoencoder latent space
    S. M. Park
    H. G. Yoon
    D. B. Lee
    J. W. Choi
    H. Y. Kwon
    C. Won
    Scientific Reports, 12
  • [7] Optimization of physical quantities in the autoencoder latent space
    Park, S. M.
    Yoon, H. G.
    Lee, D. B.
    Choi, J. W.
    Kwon, H. Y.
    Won, C.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [8] Data Augmentation in Latent Space with Variational Autoencoder and Pretrained Image Model for Visual Reinforcement Learning
    Dang, Xuzhe
    Edelkamp, Stefan
    KI 2024: ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2024, 2024, 14992 : 45 - 59
  • [9] Latent Space Expanded Variational Autoencoder for Sentence Generation
    Song, Tianbao
    Sun, Jingbo
    Chen, Bo
    Peng, Weiming
    Song, Jihua
    IEEE ACCESS, 2019, 7 : 144618 - 144627
  • [10] SALSA: Semantically-Aware Latent Space Autoencoder
    Kirchoff, Kathryn E.
    Maxfield, Travis
    Tropsha, Alexander
    Gomez, Shawn M.
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 13211 - 13219