Visual Analysis of Leaky Integrate-and-Fire Spiking Neuron Models and Circuits

被引:0
|
作者
Sedighi, Sara [1 ]
Afrin, Farhana [1 ]
Onyejegbu, Elonna [1 ]
Cantley, Kurtis D. [1 ]
机构
[1] Boise State Univ, Dept Elect & Comp Engn, Boise, ID 83725 USA
基金
美国国家科学基金会;
关键词
Spiking neural network; Threshold dynamics; decay rate; LIF neuron;
D O I
10.1109/MWSCAS60917.2024.10658798
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emulating biologically plausible online learning in spiking neural networks (SNNs) will enable the next generation of energy-efficient neuromorphic architectures. While software leads the way in terms of exploring various Machine Learning (ML) algorithms and applications, bridging the gap between hardware (devices and circuits) and software is crucial to accurately predict network properties, especially at large scale. This work compares behavior of a spiking neuron circuit simulated with Cadence Spectre to a Python model implemented with a custom spiking neuron model. The results demonstrate that the two exhibit the same spiking characteristics over a range of parameter values, confirming that the more versatile Python model indeed has a hardware equivalent.
引用
收藏
页码:1437 / 1440
页数:4
相关论文
共 50 条
  • [41] Controllability of the unijunction transistor based integrate-and-fire electronic spiking neuron
    Adomaitiene, Elena
    Asmontas, Steponas
    Bumeliene, Skaidra
    Tamasevicius, Arunas
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2021, 133
  • [42] Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons
    Sakai, Y
    Funahashi, S
    Shinomoto, S
    NEURAL NETWORKS, 1999, 12 (7-8) : 1181 - 1190
  • [43] A compact skyrmionic leaky-integrate-fire spiking neuron device
    Chen, Xing
    Kang, Wang
    Zhu, Daoqian
    Zhang, Xichao
    Lei, Na
    Zhang, Youguang
    Zhou, Yan
    Zhao, Weisheng
    NANOSCALE, 2018, 10 (13) : 6139 - 6146
  • [44] Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks
    Yang, Jia-Qin
    Wang, Ruopeng
    Wang, Zhan-Peng
    Ma, Qin-Yuan
    Mao, Jing-Yu
    Ren, Yi
    Yang, Xiaoyang
    Zhou, Ye
    Han, Su-Ting
    NANO ENERGY, 2020, 74
  • [45] Neuron firing in driven nonlinear integrate-and-fire models
    Kostur, Marcin
    Schindler, Michael
    Talkner, Peter
    Haenggi, Peter
    MATHEMATICAL BIOSCIENCES, 2007, 207 (02) : 302 - 311
  • [46] Single Germanium MOSFET-Based Low Energy and Controllable Leaky Integrate-and-Fire Neuron for Spiking Neural Networks
    Khanday, Mudasir A.
    Bashir, Faisal
    Khanday, Farooq A.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (08) : 4265 - 4270
  • [47] Spike-Frequency Adaptation of a Generalized Leaky Integrate-and-Fire Model Neuron
    Ying-Hui Liu
    Xiao-Jing Wang
    Journal of Computational Neuroscience, 2001, 10 : 25 - 45
  • [48] The Morris-Lecar neuron model embeds a leaky integrate-and-fire model
    Ditlevsen, Susanne
    Greenwood, Priscilla
    JOURNAL OF MATHEMATICAL BIOLOGY, 2013, 67 (02) : 239 - 259
  • [49] Efficiency of the bio-inspired Leaky Integrate-and-Fire neuron for signal coding
    Doutsi, Effrosyni
    Fillatre, Lionel
    Antonini, Marc
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [50] Linear response theory of stochastic resonance in a leaky integrate-and-fire neuron model
    Shimokawa, T
    Oka, T
    Sato, S
    IEEE EMBS APBME 2003, 2003, : 330 - 331