Visual Analysis of Leaky Integrate-and-Fire Spiking Neuron Models and Circuits

被引:0
|
作者
Sedighi, Sara [1 ]
Afrin, Farhana [1 ]
Onyejegbu, Elonna [1 ]
Cantley, Kurtis D. [1 ]
机构
[1] Boise State Univ, Dept Elect & Comp Engn, Boise, ID 83725 USA
基金
美国国家科学基金会;
关键词
Spiking neural network; Threshold dynamics; decay rate; LIF neuron;
D O I
10.1109/MWSCAS60917.2024.10658798
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emulating biologically plausible online learning in spiking neural networks (SNNs) will enable the next generation of energy-efficient neuromorphic architectures. While software leads the way in terms of exploring various Machine Learning (ML) algorithms and applications, bridging the gap between hardware (devices and circuits) and software is crucial to accurately predict network properties, especially at large scale. This work compares behavior of a spiking neuron circuit simulated with Cadence Spectre to a Python model implemented with a custom spiking neuron model. The results demonstrate that the two exhibit the same spiking characteristics over a range of parameter values, confirming that the more versatile Python model indeed has a hardware equivalent.
引用
收藏
页码:1437 / 1440
页数:4
相关论文
共 50 条
  • [31] Reconstruction of Adaptive Leaky Integrate-and-Fire Neuron to Enhance the Spiking Neural Networks Performance by Establishing Complex Dynamics
    Liu, Quan
    Cai, Mincheng
    Chen, Kun
    Ai, Qingsong
    Ma, Li
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 15
  • [32] Leaky Integrate-and-Fire Neuron Based on Organic Electrochemical Transistor for Spiking Neural Networks with Temporal-Coding
    Zhu, Yuanyuan
    Wan, Xiang
    Yan, Jie
    Zhu, Li
    Li, Run
    Tan, Cheeleong
    Yu, Zhihao
    Sun, Liuyang
    Yan, Shanchen
    Xu, Yong
    Sun, Huabin
    ADVANCED ELECTRONIC MATERIALS, 2024, 10 (03)
  • [33] Investigation of Leaky Characteristic in a Single-Transistor-Based Leaky Integrate-and-Fire Neuron
    Han, Joon-Kyu
    Kim, Myung-Su
    Kim, Seung-Il
    Lee, Mun-Woo
    Lee, Sang-Won
    Yu, Ji-Man
    Choi, Yang-Kyu
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (11) : 5912 - 5915
  • [34] Output Stream of Leaky Integrate-and-Fire Neuron Without Diffusion Approximation
    Alexander K. Vidybida
    Journal of Statistical Physics, 2017, 166 : 267 - 281
  • [35] Output Stream of Leaky Integrate-and-Fire Neuron Without Diffusion Approximation
    Vidybida, Alexander K.
    JOURNAL OF STATISTICAL PHYSICS, 2017, 166 (02) : 267 - 281
  • [36] A GENERALIZED LEAKY INTEGRATE-AND-FIRE NEURON MODEL WITH FAST IMPLEMENTATION METHOD
    Wang, Zhenzhong
    Guo, Lilin
    Adjouadi, Malek
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2014, 24 (05)
  • [37] The Morris–Lecar neuron model embeds a leaky integrate-and-fire model
    Susanne Ditlevsen
    Priscilla Greenwood
    Journal of Mathematical Biology, 2013, 67 : 239 - 259
  • [38] Leaky Integrate-and-Fire Neuron with a Refractory Period Mechanism for Invariant Spikes
    Lehmann, Hendrik M.
    Hille, Julian
    Grassmann, Cyprian
    Issakov, Vadim
    PRIME 2022: 17TH INTERNATIONAL CONFERENCE ON PHD RESEARCH IN MICROELECTRONICS AND ELECTRONICS, 2022, : 293 - 296
  • [39] Ultrafast all-optical implementation of a leaky integrate-and-fire neuron
    Kravtsov, Konstantin
    Fok, Mable P.
    Rosenbluth, David
    Prucnal, Paul R.
    OPTICS EXPRESS, 2011, 19 (03): : 2133 - 2147
  • [40] Dependency of Spiking Behaviors of an Integrate-and-fire Neuron Circuit on Shunt Capacitor
    Shah, Arati Kumari
    Cho, Eou-Sik
    Shin, Hyungsoon
    Cho, Seongjae
    JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, 2023, 23 (03) : 189 - 195