Visual Analysis of Leaky Integrate-and-Fire Spiking Neuron Models and Circuits

被引:0
|
作者
Sedighi, Sara [1 ]
Afrin, Farhana [1 ]
Onyejegbu, Elonna [1 ]
Cantley, Kurtis D. [1 ]
机构
[1] Boise State Univ, Dept Elect & Comp Engn, Boise, ID 83725 USA
基金
美国国家科学基金会;
关键词
Spiking neural network; Threshold dynamics; decay rate; LIF neuron;
D O I
10.1109/MWSCAS60917.2024.10658798
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emulating biologically plausible online learning in spiking neural networks (SNNs) will enable the next generation of energy-efficient neuromorphic architectures. While software leads the way in terms of exploring various Machine Learning (ML) algorithms and applications, bridging the gap between hardware (devices and circuits) and software is crucial to accurately predict network properties, especially at large scale. This work compares behavior of a spiking neuron circuit simulated with Cadence Spectre to a Python model implemented with a custom spiking neuron model. The results demonstrate that the two exhibit the same spiking characteristics over a range of parameter values, confirming that the more versatile Python model indeed has a hardware equivalent.
引用
收藏
页码:1437 / 1440
页数:4
相关论文
共 50 条
  • [21] Ultra-Compact, Entirely Graphene-based Nonlinear Leaky Integrate-and-Fire Spiking Neuron
    Wang, H.
    Laurenciu, N. Cucu
    Jiang, Y.
    Cotofana, S. D.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [22] Memristive leaky integrate-and-fire neuron and learnable straight-through estimator in spiking neural networks
    Chen, Tao
    She, Chunyan
    Wang, Lidan
    Duan, Shukai
    COGNITIVE NEURODYNAMICS, 2024, 18 (05) : 3075 - 3091
  • [23] Computing with the leaky integrate-and-fire neuron: Logarithmic computation and multiplication
    Tal, D
    Schwartz, EL
    NEURAL COMPUTATION, 1997, 9 (02) : 305 - 318
  • [24] A Biological Plausible Generalized Leaky Integrate-and-Fire Neuron Model
    Wang, Zhenzhong
    Guo, Lilin
    Adjouadi, Malek
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 6810 - 6813
  • [25] Differences in the subthreshold dynamics of leaky integrate-and-fire and Hodgkin-Huxley neuron models
    Standage, DI
    Trappenberg, TP
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 396 - 399
  • [26] Demonstration of integrate-and-fire neuron circuit for spiking neural networks
    Woo, Sung Yun
    Kang, Won-Mook
    Seo, Young-Tak
    Lee, Soochang
    Kwon, Dongseok
    Oh, Seongbin
    Bae, Jong-Ho
    Lee, Jong-Ho
    SOLID-STATE ELECTRONICS, 2022, 198
  • [27] A Leaky Integrate-and-Fire Laser Neuron for Ultrafast Cognitive Computing
    Nahmias, Mitchell A.
    Shastri, Bhavin J.
    Tait, Alexander N.
    Prucnal, Paul R.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (05)
  • [28] PCMO RRAM for Integrate-and-Fire Neuron in Spiking Neural Networks
    Lashkare, S.
    Chouhan, S.
    Chavan, T.
    Bhat, A.
    Kumbhare, P.
    Ganguly, U.
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (04) : 484 - 487
  • [29] Accelerating spiking neural networks with parallelizable leaky integrate-and-fire neurons*
    Arnaud Yarga, Sidi Yaya
    Wood, Sean U. N.
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2025, 5 (01):
  • [30] Simplicity and Efficiency of Integrate-and-Fire Neuron Models
    Plesser, Hans E.
    Diesmann, Markus
    NEURAL COMPUTATION, 2009, 21 (02) : 353 - 359