Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Hybrid Ensembles Allied with Data-Driven Approach

被引:0
|
作者
Zhao, Shuai [1 ]
Sun, Daming [1 ]
Liu, Yan [1 ]
Liang, Yuqi [2 ]
机构
[1] Shandong Lab Vocat & Tech Coll, Intelligent Mfg Dept, Jinan 250300, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
关键词
lithium-ion battery; reaming useful life; ensemble learning; data-driven approach; ACCURATE;
D O I
10.3390/en18051114
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Capacity fade in lithium-ion batteries (LIBs) poses challenges for various industries. Predicting and preventing this fade is crucial, and hybrid methods for estimating remaining useful life (RUL) have become prevalent and achieved significant advancements. In this paper, we introduce a hybrid voting ensemble that combines Gradient Boosting, Random Forest, and K-Nearest Neighbors to forecast the fading capacity trend and knee point. We conducted extensive experiments using the CALCE CS2 datasets. The results indicate that our proposed approach outperforms single deep learning methods for RUL prediction and accurately identifies the knee point. Beyond prediction, this innovative method can potentially be integrated into real-world applications for broader use.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Chen, Daoquan
    Hong, Weicong
    Zhou, Xiuze
    IEEE ACCESS, 2022, 10 : 19621 - 19628
  • [42] Remaining useful life prediction of lithium-ion batteries via an EIS based deep learning approach
    Li, Jie
    Zhao, Shiming
    Miah, Md Sipon
    Niu, Mingbo
    ENERGY REPORTS, 2023, 10 : 3629 - 3638
  • [43] A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction
    Peng, Jun
    Zheng, Zhiyong
    Zhang, Xiaoyong
    Deng, Kunyuan
    Gao, Kai
    Li, Heng
    Chen, Bin
    Yang, Yingze
    Huang, Zhiwu
    ENERGIES, 2020, 13 (03)
  • [44] A Data-Driven Auto-CNN-LSTM Prediction Model for Lithium-Ion Battery Remaining Useful Life
    Ren, Lei
    Dong, Jiabao
    Wang, Xiaokang
    Meng, Zihao
    Zhao, Li
    Deen, M. Jamal
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (05) : 3478 - 3487
  • [45] Short-Term Capacity Estimation and Long-Term Remaining Useful Life Prediction of Lithium-Ion Batteries Based on a Data-Driven Method
    Xia, Fei
    Chen, Xiang
    Chen, Jiajun
    JOURNAL OF ENERGY ENGINEERING, 2022, 148 (06)
  • [46] A Hybrid Method for the Prediction of the Remaining Useful Life of Lithium-Ion Batteries With Accelerated Capacity Degradation
    Cong, Xinwei
    Zhang, Caiping
    Jiang, Jiuchun
    Zhang, Weige
    Jiang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) : 12775 - 12785
  • [47] Lithium-ion batteries remaining useful life prediction based on BLS-RVM
    Chen, Zewang
    Shi, Na
    Ji, Yufan
    Niu, Mu
    Wang, Youren
    ENERGY, 2021, 234
  • [48] Prediction of remaining useful life of lithium-ion batteries based on PCA-GPR
    He B.
    Yang X.
    Wang J.
    Zhu X.
    Hu Z.
    Liu Q.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (05): : 484 - 491
  • [49] Lithium-ion batteries remaining useful life prediction based on BLS-RVM
    Chen, Zewang
    Shi, Na
    Ji, Yufan
    Niu, Mu
    Wang, Youren
    Energy, 2021, 234
  • [50] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on the Partial Voltage and Temperature
    Yang, Yanru
    Wen, Jie
    Liang, Jianyu
    Shi, Yuanhao
    Tian, Yukai
    Wang, Jiang
    SUSTAINABILITY, 2023, 15 (02)