Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Hybrid Ensembles Allied with Data-Driven Approach

被引:0
|
作者
Zhao, Shuai [1 ]
Sun, Daming [1 ]
Liu, Yan [1 ]
Liang, Yuqi [2 ]
机构
[1] Shandong Lab Vocat & Tech Coll, Intelligent Mfg Dept, Jinan 250300, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
关键词
lithium-ion battery; reaming useful life; ensemble learning; data-driven approach; ACCURATE;
D O I
10.3390/en18051114
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Capacity fade in lithium-ion batteries (LIBs) poses challenges for various industries. Predicting and preventing this fade is crucial, and hybrid methods for estimating remaining useful life (RUL) have become prevalent and achieved significant advancements. In this paper, we introduce a hybrid voting ensemble that combines Gradient Boosting, Random Forest, and K-Nearest Neighbors to forecast the fading capacity trend and knee point. We conducted extensive experiments using the CALCE CS2 datasets. The results indicate that our proposed approach outperforms single deep learning methods for RUL prediction and accurately identifies the knee point. Beyond prediction, this innovative method can potentially be integrated into real-world applications for broader use.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Data Preprocessing and Improved ELM
    Wu, Weili
    Lu, Shuangshuang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [32] iTransformer Network Based Approach for Accurate Remaining Useful Life Prediction in Lithium-Ion Batteries
    Jha, Anurag
    Dorkar, Oorja
    Biswas, Atriya
    Emadi, Ali
    2024 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ITEC 2024, 2024,
  • [33] Cycle life prediction of lithium-ion batteries based on data-driven methods
    Su, Laisuo
    Wu, Mengchen
    Li, Zhe
    Zhang, Jianbo
    ETRANSPORTATION, 2021, 10
  • [34] Validation and verification of a hybrid method for remaining useful life prediction of lithium-ion batteries
    Zhang, YongZhi
    Xiong, Rui
    He, HongWen
    Pecht, Michael
    JOURNAL OF CLEANER PRODUCTION, 2019, 212 : 240 - 249
  • [35] Early prediction of remaining useful life for Lithium-ion batteries based on a hybrid machine learning method
    Tong, Zheming
    Miao, Jiazhi
    Tong, Shuiguang
    Lu, Yingying
    JOURNAL OF CLEANER PRODUCTION, 2021, 317
  • [36] A Novel Hybrid Prognostic Approach for Remaining Useful Life Estimation of Lithium-Ion Batteries
    Sun, Tianfei
    Xia, Bizhong
    Liu, Yifan
    Lai, Yongzhi
    Zheng, Weiwei
    Wang, Huawen
    Wang, Wei
    Wang, Mingwang
    ENERGIES, 2019, 12 (19)
  • [37] An Adaptive Noise Reduction Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Qu, Wenyu
    Chen, Guici
    Zhang, Tingting
    ENERGIES, 2022, 15 (19)
  • [38] Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach
    Ansari, Shaheer
    Ayob, Afida
    Hossain Lipu, Molla Shahadat
    Hussain, Aini
    Saad, Mohamad Hanif Md
    SUSTAINABILITY, 2021, 13 (23)
  • [39] Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model
    Tang, Xuliang
    Wan, Heng
    Wang, Weiwen
    Gu, Mengxu
    Wang, Linfeng
    Gan, Linfeng
    SUSTAINABILITY, 2023, 15 (07)
  • [40] Data-driven Prognostics and Remaining Useful Life Estimation for Lithium-ion Battery: A Review
    LIU Datong
    ZHOU Jianbao
    PENG Yu
    Instrumentation, 2014, 01 (01) : 59 - 70