Solving Conformable Gegenbauer Differential Equation and Exploring Its Generating Function

被引:0
|
作者
Mohamed Ghaleb Al-Masaeed [1 ]
Eqab M. Rabei [2 ]
Sami I. Muslih [3 ]
Dumitru Baleanu [4 ]
机构
[1] Ministry of Education,Physics Department, Faculty of Science
[2] Ministry of Education and Higher Education,Science DepartmentFaculty of Science
[3] Al al-Bayt University,Department of Physics
[4] Jerash Private University,Department of Computer Science and Mathematics
[5] Al-Azhar University,undefined
[6] University of Illinois at Urbana Champaign,undefined
[7] Lebanese American University,undefined
[8] Institute of Space Sciences,undefined
关键词
Conformable derivative; Gegenbauer differential equation; Ultraspherical polynomials; 33C45; 33E30; 44A10;
D O I
10.1007/s40819-024-01796-4
中图分类号
学科分类号
摘要
In this manuscript, we address the resolution of conformable Gegenbauer differential equations with an order of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document} (0,1). We demonstrate that our solution aligns precisely with the results obtained through the power series approach. Furthermore, we delve into the investigation and validation of various properties and recursive relationships associated with Gegenbauer functions. Additionally, we introduce and substantiate the conformable Rodriguez’s formula and generating function. We plot the conformable Gegenbauer functions for different values of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. The results obtained here will lead to the same Gegenbauer polynomials when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} goes to 1.
引用
收藏
相关论文
共 50 条
  • [1] On a generalization of the generating function for Gegenbauer polynomials
    Cohl, Howard S.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (10) : 807 - 816
  • [2] Expansion in terms of Gegenbauer polynomials for solutions of a perturbed Gegenbauer differential equation
    El Kamel, J
    Fitouhi, A
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1997, 5 (3-4) : 213 - 226
  • [3] The Generating Function of the Clifford-Gegenbauer Polynomials
    De Bie, Hendrik
    Pena, Dixan Pena
    Sommen, Frank
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 321 - 324
  • [4] CONFORMABLE EXPONENTIAL DICHOTOMY AND ROUGHNESS OF CONFORMABLE FRACTIONAL DIFFERENTIAL EQUATION
    Wang, Baishun
    Zhou, Jun
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (02): : 1170 - 1202
  • [5] Applications of fuzzy conformable Laplace transforms for solving fuzzy conformable differential equations
    Awais Younus
    Muhammad Asif
    Usama Atta
    Tehmina Bashir
    Thabet Abdeljawad
    Soft Computing, 2023, 27 : 8583 - 8597
  • [6] Walsh function for solving fractional partial differential equation
    Malik, Azhar
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 2057 - 2068
  • [7] Applications of fuzzy conformable Laplace transforms for solving fuzzy conformable differential equations
    Younus, Awais
    Asif, Muhammad
    Atta, Usama
    Bashir, Tehmina
    Abdeljawad, Thabet
    SOFT COMPUTING, 2023, 27 (13) : 8583 - 8597
  • [8] Solving systems of conformable linear differential equations via the conformable exponential matrix
    Martinez, F.
    Martinez, I.
    Kaabar, Mohammed K. A.
    Paredes, S.
    AIN SHAMS ENGINEERING JOURNAL, 2021, 12 (04) : 4075 - 4080
  • [9] Solving the conformable Huxley equation using the complex method
    Dang, Guoqiang
    Liu, Qiyou
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (03): : 1303 - 1322
  • [10] Solving a laminar boundary layer equation with the rational Gegenbauer functions
    Parand, K.
    Dehghan, Mehdi
    Baharifard, F.
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (03) : 851 - 863