Solving Conformable Gegenbauer Differential Equation and Exploring Its Generating Function

被引:0
|
作者
Mohamed Ghaleb Al-Masaeed [1 ]
Eqab M. Rabei [2 ]
Sami I. Muslih [3 ]
Dumitru Baleanu [4 ]
机构
[1] Ministry of Education,Physics Department, Faculty of Science
[2] Ministry of Education and Higher Education,Science DepartmentFaculty of Science
[3] Al al-Bayt University,Department of Physics
[4] Jerash Private University,Department of Computer Science and Mathematics
[5] Al-Azhar University,undefined
[6] University of Illinois at Urbana Champaign,undefined
[7] Lebanese American University,undefined
[8] Institute of Space Sciences,undefined
关键词
Conformable derivative; Gegenbauer differential equation; Ultraspherical polynomials; 33C45; 33E30; 44A10;
D O I
10.1007/s40819-024-01796-4
中图分类号
学科分类号
摘要
In this manuscript, we address the resolution of conformable Gegenbauer differential equations with an order of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document} (0,1). We demonstrate that our solution aligns precisely with the results obtained through the power series approach. Furthermore, we delve into the investigation and validation of various properties and recursive relationships associated with Gegenbauer functions. Additionally, we introduce and substantiate the conformable Rodriguez’s formula and generating function. We plot the conformable Gegenbauer functions for different values of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}. The results obtained here will lead to the same Gegenbauer polynomials when α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} goes to 1.
引用
收藏
相关论文
共 50 条
  • [41] Exact Solutions with Variable Coefficient Function Forms for Conformable Fractional Partial Differential Equations by an Auxiliary Equation Method
    Meng, Fanwei
    Feng, Qinghua
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [43] Collocation methods based on Gegenbauer and Bernoulli wavelets for solving neutral delay differential equations
    Faheem, Mo
    Raza, Akmal
    Khan, Arshad
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 180 : 72 - 92
  • [44] Conformable differential operator generalizes the Briot-Bouquet differential equation in a complex domain
    Ibrahim, Rabha W.
    Jahangiri, Jay M.
    AIMS MATHEMATICS, 2019, 4 (06): : 1582 - 1595
  • [45] A Numerical Algorithm of Solving the Kirchhoff Integro-Differential Equation and Its Error
    Peradze, Jemal
    PROCEEDINGS OF THE WSEAS INTERNATIONAL CONFERENCE ON FINITE DIFFERENCES, FINITE ELEMENTS, FINITE VOLUMES, BOUNDARY ELEMENTS, 2009, : 124 - 129
  • [46] Fractional Gegenbauer wavelets operational matrix method for solving nonlinear fractional differential equations
    Saeed, Umer
    Rehman, Mujeeb ur
    Javid, Khurram
    Din, Qamar
    Haider, Sajjad
    MATHEMATICAL SCIENCES, 2021, 15 (01) : 83 - 97
  • [47] Fractional Gegenbauer wavelets operational matrix method for solving nonlinear fractional differential equations
    Umer Saeed
    Mujeeb ur Rehman
    Khurram Javid
    Qamar Din
    Sajjad Haider
    Mathematical Sciences, 2021, 15 : 83 - 97
  • [48] Nonlinear two conformable fractional differential equation with integral boundary condition
    Djiab, Somia
    Nouiri, Brahim
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (01): : 189 - 202
  • [49] Uniqueness criteria for initial value problem of conformable fractional differential equation
    Zou, Yumei
    Cui, Yujun
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (07): : 4077 - 4087
  • [50] Neural network as a function approximator and its application in solving differential equations
    Zeyu LIU
    Yantao YANG
    Qingdong CAI
    AppliedMathematicsandMechanics(EnglishEdition), 2019, 40 (02) : 237 - 248