Expansion in terms of Gegenbauer polynomials for solutions of a perturbed Gegenbauer differential equation

被引:0
|
作者
El Kamel, J [1 ]
Fitouhi, A
机构
[1] Fac Sci & Tech, Monastir, Tunisia
[2] Fac Sci Tunis, Tunis 1060, Tunisia
关键词
Bessel functions series; Gegenbauer differential equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A. Fitouhi and M.M. Hamza (SIAM J. Math., No. 6 (1990) 1619-1632) and with H. Chebli (JMMA, Vol. 181, No. 3(1994) 789-802) obtained Bessel functions series expansions for the eigenfunctions of certain second order differential operators. This paper uses the same basic method to show that solutions of the perturbed Gegenbauer differential equation with an initial condition expand as a uniformly convergent Gegenbauer polynomial series on an interval.
引用
收藏
页码:213 / 226
页数:14
相关论文
共 50 条
  • [1] The expansion in Gegenbauer polynomials: A simple method for the fast computation of the Gegenbauer coefficients
    De Micheli, Enrico
    Viano, Giovanni Alberto
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 239 : 112 - 122
  • [2] On the asymptotic expansion of the entropy of Gegenbauer polynomials
    Lara, JFS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 142 (02) : 401 - 409
  • [3] ON BOUNDS FOR GEGENBAUER POLYNOMIALS
    KHANDEKAR, PR
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (09): : 1018 - &
  • [4] POLYNOMIALS ASSOCIATED WITH GEGENBAUER POLYNOMIALS
    HORADAM, AF
    PETHE, S
    FIBONACCI QUARTERLY, 1981, 19 (05): : 393 - 398
  • [5] GEGENBAUER POLYNOMIALS REVISITED
    HORADAM, AF
    FIBONACCI QUARTERLY, 1985, 23 (04): : 294 - &
  • [6] Appendix: Gegenbauer Polynomials
    Kobayashi, Toshiyuki
    Kubo, Toshihisa
    Pevzner, Michael
    CONFORMAL SYMMETRY BREAKING OPERATORS FOR DIFFERENTIAL FORMS ON SPHERES, 2016, 2170 : 173 - 184
  • [7] Gegenbauer polynomials and semiseparable matrices
    Keiner, Jens
    Electronic Transactions on Numerical Analysis, 2008, 30 : 26 - 53
  • [8] Derivatives of generalized Gegenbauer polynomials
    García Fuertes W.
    Perelomov A.M.
    Theoretical and Mathematical Physics, 2002, 131 (2) : 609 - 611
  • [9] Derivatives of generalized Gegenbauer polynomials
    Fuertes, WG
    Perelomov, AM
    THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 131 (02) : 609 - 611
  • [10] INFORMATION ENTROPY OF GEGENBAUER POLYNOMIALS
    De Vicente, Julio I.
    Gandy, Silvia
    Sanchez-Ruiz, Jorge
    DIFFERENCE EQUATIONS, SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2007, : 579 - +