On approximation spaces and Greedy-type bases

被引:1
|
作者
Berna, Pablo M. [1 ]
Chu, Hung Viet [2 ]
Hernandez, Eugenio [3 ]
机构
[1] CUNEF Univ, Dept Matemat, Madrid 28040, Spain
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
关键词
Approximation spaces; Greedy bases; Thresholding greedy algorithm; BANACH; EMBEDDINGS; ALGORITHM;
D O I
10.1007/s43034-024-00397-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to introduce omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-Chebyshev-Greedy and omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-partially greedy approximation classes and study their relation with omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-approximation spaces, where the latter are a generalization of the classical approximation spaces. The relation gives us sufficient conditions of when certain continuous embeddings imply different greedy-type properties. Along the way, we generalize a result by P. Wojtaszczyk as well as characterize semi-greedy Schauder bases in quasi-Banach spaces, generalizing a previous result by the first author.
引用
收藏
页数:39
相关论文
共 50 条
  • [41] On consecutive greedy and other greedy-like type of bases
    Berasategui, Miguel
    Berna, Pablo M.
    Chu, Hung Viet
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (04)
  • [42] Lorentz Spaces and Embeddings Induced by Almost Greedy Bases in Banach Spaces
    F. Albiac
    J. L. Ansorena
    Constructive Approximation, 2016, 43 : 197 - 215
  • [43] Lorentz Spaces and Embeddings Induced by Almost Greedy Bases in Banach Spaces
    Albiac, F.
    Ansorena, J. L.
    CONSTRUCTIVE APPROXIMATION, 2016, 43 (02) : 197 - 215
  • [45] Building highly conditional almost greedy and quasi-greedy bases in Banach spaces
    Albiac, F.
    Ansorena, L.
    Dilworth, S. J.
    Kutzarova, Denka
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (06) : 1893 - 1924
  • [46] Lorentz spaces and embeddings induced by almost greedy bases in superreflexive Banach spaces
    José L. Ansorena
    Glenier Bello
    Przemysław Wojtaszczyk
    Israel Journal of Mathematics, 2023, 255 : 621 - 644
  • [47] SPARSE APPROXIMATION AND RECOVERY BY GREEDY ALGORITHMS IN BANACH SPACES
    Temlyakov, V. N.
    FORUM OF MATHEMATICS SIGMA, 2014, 2
  • [48] Non-linear approximation by 1-greedy bases
    Berna, Pablo M.
    Gonzalez, David
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [49] Greedy Algorithms and Approximation Properties for Frames in Hilbert Spaces
    K. T. Poumai
    S. K. Kaushik
    Sampling Theory in Signal and Image Processing, 2018, 17 (1): : 73 - 94
  • [50] Conditional Quasi-Greedy Bases in Hilbert and Banach Spaces
    Garrigos, Gustavo
    Wojtaszczyk, Przemyslaw
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (04) : 1017 - 1036