On approximation spaces and Greedy-type bases

被引:1
|
作者
Berna, Pablo M. [1 ]
Chu, Hung Viet [2 ]
Hernandez, Eugenio [3 ]
机构
[1] CUNEF Univ, Dept Matemat, Madrid 28040, Spain
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
关键词
Approximation spaces; Greedy bases; Thresholding greedy algorithm; BANACH; EMBEDDINGS; ALGORITHM;
D O I
10.1007/s43034-024-00397-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to introduce omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-Chebyshev-Greedy and omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-partially greedy approximation classes and study their relation with omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-approximation spaces, where the latter are a generalization of the classical approximation spaces. The relation gives us sufficient conditions of when certain continuous embeddings imply different greedy-type properties. Along the way, we generalize a result by P. Wojtaszczyk as well as characterize semi-greedy Schauder bases in quasi-Banach spaces, generalizing a previous result by the first author.
引用
收藏
页数:39
相关论文
共 50 条
  • [21] Greedy approximation with regard to non-greedy bases
    V. N. Temlyakov
    Mingrui Yang
    Peixin Ye
    Advances in Computational Mathematics, 2011, 34 : 319 - 337
  • [22] Lebesgue-Type Inequalities for Greedy Approximation in Banach Spaces
    Savu, Daniel
    Temlyakov, Vladimir N.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) : 1098 - 1106
  • [23] A remark on approximation with polynomials and greedy bases
    Berna, Pablo M.
    Perez, Antonio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 478 (02) : 466 - 475
  • [24] Greedy bases in variable Lebesgue spaces
    David Cruz-Uribe
    Eugenio Hernández
    José María Martell
    Monatshefte für Mathematik, 2016, 179 : 355 - 378
  • [25] Characterization of greedy bases in Banach spaces
    Berna, Pablo M.
    Blasco, Oscar
    JOURNAL OF APPROXIMATION THEORY, 2017, 215 : 28 - 39
  • [26] Wavelets, Orlicz spaces, and greedy bases
    Garrigos, Gustavo
    Herandez, Eugenio
    Martell, Jose Maria
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 24 (01) : 70 - 93
  • [27] Greedy bases in weighted modulation spaces
    Izuki, Mitsuo
    Sawano, Yoshihiro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E2045 - E2053
  • [28] Greedy bases in variable Lebesgue spaces
    Cruz-Uribe, David
    Hernandez, Eugenio
    Maria Martell, Jose
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (03): : 355 - 378
  • [29] Simultaneous greedy approximation in Banach spaces
    Leviatan, D
    Temlyakov, VN
    JOURNAL OF COMPLEXITY, 2005, 21 (03) : 275 - 293
  • [30] On greedy approximation in complex Banach spaces
    Gasnikov, A., V
    Temlyakov, V. N.
    RUSSIAN MATHEMATICAL SURVEYS, 2024, 79 (06)