On approximation spaces and Greedy-type bases

被引:1
|
作者
Berna, Pablo M. [1 ]
Chu, Hung Viet [2 ]
Hernandez, Eugenio [3 ]
机构
[1] CUNEF Univ, Dept Matemat, Madrid 28040, Spain
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
关键词
Approximation spaces; Greedy bases; Thresholding greedy algorithm; BANACH; EMBEDDINGS; ALGORITHM;
D O I
10.1007/s43034-024-00397-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to introduce omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-Chebyshev-Greedy and omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-partially greedy approximation classes and study their relation with omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-approximation spaces, where the latter are a generalization of the classical approximation spaces. The relation gives us sufficient conditions of when certain continuous embeddings imply different greedy-type properties. Along the way, we generalize a result by P. Wojtaszczyk as well as characterize semi-greedy Schauder bases in quasi-Banach spaces, generalizing a previous result by the first author.
引用
收藏
页数:39
相关论文
共 50 条
  • [31] Weak forms of unconditionality of bases in greedy approximation
    Albiac, Fernando
    Ansorena, Jose L.
    Berasategui, Miguel
    Berna, Pablo M.
    Lassalle, Silvia
    STUDIA MATHEMATICA, 2022, 267 (01) : 1 - 17
  • [32] Weak greedy algorithms for nonlinear approximation with quasi-greedy bases
    Jingfan, Long
    Peixin, Ye
    WSEAS Transactions on Mathematics, 2014, 13 (01) : 525 - 534
  • [33] Greedy approximation with regard to some normalized bases
    Zhang, Sheng
    Ye, Peixin
    2010 6TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS NETWORKING AND MOBILE COMPUTING (WICOM), 2010,
  • [34] On the existence of almost greedy bases in Banach spaces
    Dilworth, SJ
    Kalton, NJ
    Kutzarova, D
    STUDIA MATHEMATICA, 2003, 159 (01) : 67 - 101
  • [35] Greedy Algorithms for Reduced Bases in Banach Spaces
    Ronald DeVore
    Guergana Petrova
    Przemyslaw Wojtaszczyk
    Constructive Approximation, 2013, 37 : 455 - 466
  • [36] A Functional Characterization of Almost Greedy and Partially Greedy Bases in Banach Spaces
    Manuel Berna, Pablo
    Mondejar, Diego
    MATHEMATICS, 2021, 9 (15)
  • [37] Greedy Algorithms for Reduced Bases in Banach Spaces
    DeVore, Ronald
    Petrova, Guergana
    Wojtaszczyk, Przemyslaw
    CONSTRUCTIVE APPROXIMATION, 2013, 37 (03) : 455 - 466
  • [38] Greedy Bases Are Best for m-Term Approximation
    Bednorz, Witold
    CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) : 265 - 275
  • [39] MINIMUM BASES FOR PERMUTATION-GROUPS - THE GREEDY APPROXIMATION
    BLAHA, KD
    JOURNAL OF ALGORITHMS, 1992, 13 (02) : 297 - 306
  • [40] Greedy Bases Are Best for m-Term Approximation
    Witold Bednorz
    Constructive Approximation, 2008, 28 : 265 - 275