Time-dependent Global Attractors for the Nonclassical Diffusion Equations with Fading Memory

被引:0
|
作者
Yu-ming Qin [1 ]
Xiao-ling Chen [2 ]
机构
[1] Donghua University,Department of Mathematics, Institute for Nonlinear Science
[2] Donghua University,Department of Mathematics
关键词
time-dependent global attractors; nonclassical diffusion equation; fading memory; time-dependent spaces; long-time behavior; 35B41; 35K57;
D O I
10.1007/s10255-024-1036-4
中图分类号
学科分类号
摘要
In this paper, we discuss the long-time behavior of solutions to the nonclassical diffusion equation with fading memory when the nonlinear term f satisfies critical exponential growth and the external force g(x) ∈ L2(Ω). In the framework of time-dependent spaces, we verify the existence of absorbing sets and the asymptotic compactness of the process, then we obtain the existence of the time-dependent global attractor A={At}t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr A}={\{A_{t}}\}_{t\in{\mathbb R}}$$\end{document} in ℳt. Furthermore, we achieve the regularity of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr A}$$\end{document}, that is, At is bounded in ℳt1 with a bound independent of t.
引用
收藏
页码:498 / 512
页数:14
相关论文
共 50 条
  • [41] Upper semicontinuity of uniform attractors for nonclassical diffusion equations
    Yonghai Wang
    Pengrui Li
    Yuming Qin
    Boundary Value Problems, 2017
  • [42] Pullback Attractors for Nonclassical Diffusion Equations With a Delay Operator
    Yang, Bin
    Qin, Yuming
    Miranville, Alain
    Wang, Ke
    STUDIES IN APPLIED MATHEMATICS, 2025, 154 (03)
  • [43] Upper semicontinuity of uniform attractors for nonclassical diffusion equations
    Wang, Yonghai
    Li, Pengrui
    Qin, Yuming
    BOUNDARY VALUE PROBLEMS, 2017,
  • [44] Upper semicontinuity of pullback attractors for nonclassical diffusion equations
    Wang, Yonghai
    Qin, Yuming
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
  • [45] Attractors for nonclassical diffusion equations with dynamic boundary conditions
    Lee, Jihoon
    Vu Manh Toi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
  • [46] Regularity of pullback attractors for nonautonomous nonclassical diffusion equations
    Wang, Yonghai
    Zhu, Zilong
    Li, Pengrui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (01) : 16 - 31
  • [47] ASYMPTOTIC DYNAMIC OF THE NONCLASSICAL DIFFUSION EQUATION WITH TIME-DEPENDENT COEFFICIENT
    Wang, Jing
    Ma, Qiaozhen
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 445 - 463
  • [48] TIME-DEPENDENT GLOBAL ATTRACTORS FOR THE STRONGLY DAMPED WAVE EQUATIONS WITH LOWER REGULAR FORCING TERM
    Mei, Xinyu
    Sun, Tao
    Xie, Yongqin
    Zhu, Kaixuan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 60 (02) : 653 - 672
  • [49] ATTRACTORS FOR WAVE EQUATIONS WITH NONLINEAR DAMPING ON TIME-DEPENDENT SPACE
    Meng, Fengjuan
    Yang, Meihua
    Zhong, Chengkui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (01): : 205 - 225
  • [50] A Remark on Nonclassical Diffusion Equations with Memory
    Monica Conti
    Elsa M. Marchini
    Applied Mathematics & Optimization, 2016, 73 : 1 - 21