Time-dependent Global Attractors for the Nonclassical Diffusion Equations with Fading Memory

被引:0
|
作者
Yu-ming Qin [1 ]
Xiao-ling Chen [2 ]
机构
[1] Donghua University,Department of Mathematics, Institute for Nonlinear Science
[2] Donghua University,Department of Mathematics
关键词
time-dependent global attractors; nonclassical diffusion equation; fading memory; time-dependent spaces; long-time behavior; 35B41; 35K57;
D O I
10.1007/s10255-024-1036-4
中图分类号
学科分类号
摘要
In this paper, we discuss the long-time behavior of solutions to the nonclassical diffusion equation with fading memory when the nonlinear term f satisfies critical exponential growth and the external force g(x) ∈ L2(Ω). In the framework of time-dependent spaces, we verify the existence of absorbing sets and the asymptotic compactness of the process, then we obtain the existence of the time-dependent global attractor A={At}t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr A}={\{A_{t}}\}_{t\in{\mathbb R}}$$\end{document} in ℳt. Furthermore, we achieve the regularity of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr A}$$\end{document}, that is, At is bounded in ℳt1 with a bound independent of t.
引用
收藏
页码:498 / 512
页数:14
相关论文
共 50 条
  • [21] ATTRACTORS FOR A CLASS OF PERTURBED NONCLASSICAL DIFFUSION EQUATIONS WITH MEMORY
    Yuan, Jianbo
    Zhang, Shixuan
    Xie, Yongqin
    Zhang, Jiangwei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, : 4995 - 5007
  • [22] Global attractors for nonclassical diffusion equations of Kirchhoff type
    Wang, Yong-Hai
    Wang, Ling-Zhi
    Journal of Donghua University (English Edition), 2012, 29 (04) : 305 - 310
  • [23] Global Attractors for Nonclassical Diffusion Equations of Kirchhoff Type
    汪永海
    王灵芝
    JournalofDonghuaUniversity(EnglishEdition), 2012, 29 (04) : 305 - 310
  • [24] Attractor of the nonclassical diffusion equation with memory on time-dependent space
    Wang, Jing
    Ma, Qiaozhen
    Zhou, Wenxue
    AIMS MATHEMATICS, 2023, 8 (06): : 14820 - 14841
  • [25] Time-Dependent Global Attractor for a Class of Nonclassical Parabolic Equations
    Zhang, Fang-hong
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [26] ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO NONCLASSICAL DIFFUSION EQUATIONS WITH DEGENERATE MEMORY AND A TIME-DEPENDENT PERTURBED PARAMETER
    Zhang, Jiangwei
    Xie, Zhe
    Xie, Yongqin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (22) : 1 - 27
  • [27] Time-dependent global attractor for the nonclassical diffusion equations (vol 94, pg 1439, 2015)
    Liu, Y-F
    Ding, Tao
    APPLICABLE ANALYSIS, 2015, 94 (08)
  • [28] Uniform attractors for nonclassical diffusion equations with perturbed parameter and memory
    Xie, Yongqin
    Liu, Di
    Zhang, Jiangwei
    Liu, Ximeng
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (02)
  • [29] Global attractors for a nonclassical diffusion equation
    Sun, Chun You
    Wang, Su Yun
    Zhong, Cheng Kui
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (07) : 1271 - 1280
  • [30] Global Attractors in H1(RN) for Nonclassical Diffusion Equations
    Ma, Qiao-zhen
    Liu, Yong-feng
    Zhang, Fang-hong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012