Time-dependent Global Attractors for the Nonclassical Diffusion Equations with Fading Memory

被引:0
|
作者
Yu-ming Qin [1 ]
Xiao-ling Chen [2 ]
机构
[1] Donghua University,Department of Mathematics, Institute for Nonlinear Science
[2] Donghua University,Department of Mathematics
关键词
time-dependent global attractors; nonclassical diffusion equation; fading memory; time-dependent spaces; long-time behavior; 35B41; 35K57;
D O I
10.1007/s10255-024-1036-4
中图分类号
学科分类号
摘要
In this paper, we discuss the long-time behavior of solutions to the nonclassical diffusion equation with fading memory when the nonlinear term f satisfies critical exponential growth and the external force g(x) ∈ L2(Ω). In the framework of time-dependent spaces, we verify the existence of absorbing sets and the asymptotic compactness of the process, then we obtain the existence of the time-dependent global attractor A={At}t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr A}={\{A_{t}}\}_{t\in{\mathbb R}}$$\end{document} in ℳt. Furthermore, we achieve the regularity of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr A}$$\end{document}, that is, At is bounded in ℳt1 with a bound independent of t.
引用
收藏
页码:498 / 512
页数:14
相关论文
共 50 条
  • [31] Global Attractors for a Nonclassical Diffusion Equation
    Chun You Sun
    Su Yun Wang
    Cheng Kui Zhong
    Acta Mathematica Sinica, English Series, 2007, 23 : 1271 - 1280
  • [32] DYNAMICAL BEHAVIOR OF NONCLASSICAL DIFFUSION EQUATIONS WITH THE DRIVING DELAY IN TIME-DEPENDENT SPACES
    Zhang, Shixuan
    Li, Qingsong
    Zhang, Jiangwei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024,
  • [33] Global Attractors for a Nonclassical Diffusion Equation
    Chun You SUN
    Su Yun WANG
    Cheng Kui ZHONG
    ActaMathematicaSinica(EnglishSeries), 2007, 23 (07) : 1271 - 1280
  • [34] On trajectory and global attractors for semilinear heat equations with fading memory
    Chepyzhov, VV
    Miranville, A
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (01) : 119 - 167
  • [35] Uniform Attractors of Nonclassical Diffusion Equations Lacking Instantaneous Damping on RN with Memory
    Nguyen Duong Toan
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 789 - 822
  • [36] Pullback attractors for nonclassical diffusion equations with delays
    Zhu, Kaixuan
    Sun, Chunyou
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (09)
  • [37] Pullback attractors of nonautonomous nonclassical diffusion equations with nonlocal diffusion
    Peng, Xiaoming
    Shang, Yadong
    Zheng, Xiaoxiao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):
  • [38] Pullback attractors of nonautonomous nonclassical diffusion equations with nonlocal diffusion
    Xiaoming Peng
    Yadong Shang
    Xiaoxiao Zheng
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [39] Global solutions of the time-dependent drift-diffusion semiconductor equations
    Fang, WF
    Ito, K
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 123 (02) : 523 - 566
  • [40] Global existence for time-dependent damped wave equations with nonlinear memory
    Kirane, Mokhtar
    Fino, Ahmad Z.
    Alsaedi, Ahmed
    Ahmad, Bashir
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)