Time-dependent Global Attractors for the Nonclassical Diffusion Equations with Fading Memory

被引:0
|
作者
Yu-ming Qin [1 ]
Xiao-ling Chen [2 ]
机构
[1] Donghua University,Department of Mathematics, Institute for Nonlinear Science
[2] Donghua University,Department of Mathematics
关键词
time-dependent global attractors; nonclassical diffusion equation; fading memory; time-dependent spaces; long-time behavior; 35B41; 35K57;
D O I
10.1007/s10255-024-1036-4
中图分类号
学科分类号
摘要
In this paper, we discuss the long-time behavior of solutions to the nonclassical diffusion equation with fading memory when the nonlinear term f satisfies critical exponential growth and the external force g(x) ∈ L2(Ω). In the framework of time-dependent spaces, we verify the existence of absorbing sets and the asymptotic compactness of the process, then we obtain the existence of the time-dependent global attractor A={At}t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr A}={\{A_{t}}\}_{t\in{\mathbb R}}$$\end{document} in ℳt. Furthermore, we achieve the regularity of A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr A}$$\end{document}, that is, At is bounded in ℳt1 with a bound independent of t.
引用
收藏
页码:498 / 512
页数:14
相关论文
共 50 条
  • [1] Time-dependent Global Attractors for the Nonclassical Diffusion Equations with Fading Memory
    Yuming QIN
    Xiaoling CHEN
    Acta Mathematicae Applicatae Sinica, 2025, 41 (02) : 498 - 512
  • [2] Pullback attractors for the nonclassical diffusion equations with memory in time-dependent spaces
    Li, Ke
    Xie, Yongqin
    Ren, Yong
    Li, Jun
    AIMS MATHEMATICS, 2023, 8 (12): : 30537 - 30561
  • [3] Attractors for the nonclassical diffusion equations with fading memory
    Wang, Xuan
    Yang, Lu
    Zhong, Chengkui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) : 327 - 337
  • [4] TRAJECTORY ATTRACTORS FOR NONCLASSICAL DIFFUSION EQUATIONS WITH FADING MEMORY
    Wang, Yonghai
    Wang, Lingzhi
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) : 721 - 737
  • [5] TRAJECTORY ATTRACTORS FOR NONCLASSICAL DIFFUSION EQUATIONS WITH FADING MEMORY
    汪永海
    王灵芝
    ActaMathematicaScientia, 2013, 33 (03) : 721 - 737
  • [6] Attractors for the nonclassical reaction–diffusion equations on time-dependent spaces
    Kaixuan Zhu
    Yongqin Xie
    Feng Zhou
    Boundary Value Problems, 2020
  • [7] Time-dependent global attractor for the nonclassical diffusion equations
    Ding, Tao
    Liu, Yong-feng
    APPLICABLE ANALYSIS, 2015, 94 (07) : 1439 - 1449
  • [8] Attractors for the nonclassical reaction-diffusion equations on time-dependent spaces
    Zhu, Kaixuan
    Xie, Yongqin
    Zhou, Feng
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [9] Strong global attractors for nonclassical diffusion equation with fading memory
    Zhang, Yubao
    Wang, Xuan
    Gao, Chenghua
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [10] Strong global attractors for nonclassical diffusion equation with fading memory
    Yubao Zhang
    Xuan Wang
    Chenghua Gao
    Advances in Difference Equations, 2017