Adaptive finite volume schemes for anisotropic heterogeneous diffusion problems on arbitary convex and nonconvex meshes

被引:0
|
作者
Bazirha, Zaroual [1 ]
Azrar, Lahcen [1 ,2 ]
Alghamedi, Ateq Ahmed [3 ]
机构
[1] Mohammed V Univ, Res Ctr STIS, Dept Appl Math & Informat, ENSAM,M2CS, Rabat, Morocco
[2] King Abdulaziz Univ, Fac Engn, Dept Mech Engn, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah, Saudi Arabia
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2025年 / 44卷 / 01期
关键词
Diffusion problems; Refinement; Non-convex mesh; Discrete Duality Finite Volume (DDFV); EQUATIONS; APPROXIMATION; OPERATORS; DDFV;
D O I
10.1007/s40314-025-03087-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solving the anisotropic heterogeneous diffusion problems requires a well adopted subdivision of the computational domain with a mesh refinement procedure to numerically guarantee the convergence. A new refinement procedure for quadrilateral meshes in convex or non-convex cases is elaborated herein. Various DDFV schemes are elaborated for anisotropic, strongly anisotropic and discontinuous diffusion tensors. Structured and unstructured meshes are considered in the convex and non-convex elements as well as arbitrary meshes with various distortion orders. The presented procedure allows eliminating the convergence rate sensitivity. The main advantage of this mesh refinement strategy is to reduce the percentage of non-convex elements at each step after refinement and to achieve super-convergence on discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{1}$$\end{document} and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{2}$$\end{document}-norms. The efficiency and performance of the elaborated adaptive DDFV scheme are numerically demonstrated for the considered quadrilateral meshes.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] CONDITIONING OF THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION PROBLEMS WITH GENERAL SIMPLICIAL MESHES
    Wang, Xiang
    Huang, Weizhang
    Li, Yonghai
    MATHEMATICS OF COMPUTATION, 2019, 88 (320) : 2665 - 2696
  • [42] An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems
    Li, Xianping
    Huang, Weizhang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (21) : 8072 - 8094
  • [43] THE G METHOD FOR HETEROGENEOUS ANISOTROPIC DIFFUSION ON GENERAL MESHES
    Agelas, Leo
    Di Pietro, Daniele A.
    Droniou, Jerome
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (04): : 597 - 625
  • [44] FINITE VOLUME SCHEMES FOR THE BIHARMONIC PROBLEM ON GENERAL MESHES
    Eymard, R.
    Gallouet, T.
    Herbin, R.
    Linke, A.
    MATHEMATICS OF COMPUTATION, 2012, 81 (280) : 2019 - 2048
  • [45] Adaptive Diffusion Schemes for Heterogeneous Networks
    Fernandez-Bes, Jesus
    Arenas-Garcia, Jeronimo
    Silva, Magno T. M.
    Azpicueta-Ruiz, Luis A.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (21) : 5661 - 5674
  • [46] A mixed finite volume scheme for anisotropic diffusion problems on any grid
    Droniou, Jerome
    Eymard, Robert
    NUMERISCHE MATHEMATIK, 2006, 105 (01) : 35 - 71
  • [47] A mixed finite volume scheme for anisotropic diffusion problems on any grid
    Jérôme Droniou
    Robert Eymard
    Numerische Mathematik, 2006, 105 : 35 - 71
  • [48] Control Volume Finite Difference On Adaptive Meshes
    Khattri, Sanjay K.
    Fladmark, Gunnar E.
    Dahle, Helge K.
    Lecture Notes in Computational Science and Engineering, 2007, 55 : 627 - 633
  • [49] Finite volume schemes for multilayer diffusion
    March, Nathan G.
    Carr, Elliot J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 : 206 - 223
  • [50] A Maximum-Principle-Preserving Finite Volume Scheme for Diffusion Problems on Distorted Meshes
    Wu, Dan
    Lv, Junliang
    Lin, Lei
    Sheng, Zhiqiang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023, 15 (04) : 1076 - 1108