Adaptive finite volume schemes for anisotropic heterogeneous diffusion problems on arbitary convex and nonconvex meshes
被引:0
|
作者:
Bazirha, Zaroual
论文数: 0引用数: 0
h-index: 0
机构:
Mohammed V Univ, Res Ctr STIS, Dept Appl Math & Informat, ENSAM,M2CS, Rabat, MoroccoMohammed V Univ, Res Ctr STIS, Dept Appl Math & Informat, ENSAM,M2CS, Rabat, Morocco
Bazirha, Zaroual
[1
]
论文数: 引用数:
h-index:
机构:
Azrar, Lahcen
[1
,2
]
Alghamedi, Ateq Ahmed
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah, Saudi ArabiaMohammed V Univ, Res Ctr STIS, Dept Appl Math & Informat, ENSAM,M2CS, Rabat, Morocco
Alghamedi, Ateq Ahmed
[3
]
机构:
[1] Mohammed V Univ, Res Ctr STIS, Dept Appl Math & Informat, ENSAM,M2CS, Rabat, Morocco
[2] King Abdulaziz Univ, Fac Engn, Dept Mech Engn, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah, Saudi Arabia
Solving the anisotropic heterogeneous diffusion problems requires a well adopted subdivision of the computational domain with a mesh refinement procedure to numerically guarantee the convergence. A new refinement procedure for quadrilateral meshes in convex or non-convex cases is elaborated herein. Various DDFV schemes are elaborated for anisotropic, strongly anisotropic and discontinuous diffusion tensors. Structured and unstructured meshes are considered in the convex and non-convex elements as well as arbitrary meshes with various distortion orders. The presented procedure allows eliminating the convergence rate sensitivity. The main advantage of this mesh refinement strategy is to reduce the percentage of non-convex elements at each step after refinement and to achieve super-convergence on discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{1}$$\end{document} and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{2}$$\end{document}-norms. The efficiency and performance of the elaborated adaptive DDFV scheme are numerically demonstrated for the considered quadrilateral meshes.
机构:
Guangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Peoples R ChinaGuangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Peoples R China
Zhou, Yanhui
Zhang, Yanlong
论文数: 0引用数: 0
h-index: 0
机构:
China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
Inst Appl Phys & Computat Math, Beijing 100088, Peoples R ChinaGuangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Peoples R China
Zhang, Yanlong
Wu, Jiming
论文数: 0引用数: 0
h-index: 0
机构:
Inst Appl Phys & Computat Math, Beijing 100088, Peoples R ChinaGuangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Peoples R China
机构:
Commissariat Energie Atom, DEN, DM2S, SFME,MTMS, F-91191 Gif Sur Yvette, FranceCommissariat Energie Atom, DEN, DM2S, SFME,MTMS, F-91191 Gif Sur Yvette, France
机构:
CNRS, Lab Mecan Struct Ind Durables, UMR EDF 2832, F-92141 Clamart, France
Univ Paris Est, CNRS, MSME FRE3160, Lab Modelisat & Simulat Multi Echelle, F-77454 Marne La Vallee, FranceCNRS, Lab Mecan Struct Ind Durables, UMR EDF 2832, F-92141 Clamart, France
Angelini, O.
Chavant, C.
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, Lab Mecan Struct Ind Durables, UMR EDF 2832, F-92141 Clamart, FranceCNRS, Lab Mecan Struct Ind Durables, UMR EDF 2832, F-92141 Clamart, France
Chavant, C.
Chenier, E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, CNRS, MSME FRE3160, Lab Modelisat & Simulat Multi Echelle, F-77454 Marne La Vallee, FranceCNRS, Lab Mecan Struct Ind Durables, UMR EDF 2832, F-92141 Clamart, France
Chenier, E.
Eymard, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, CNRS, MSME FRE3160, Lab Modelisat & Simulat Multi Echelle, F-77454 Marne La Vallee, FranceCNRS, Lab Mecan Struct Ind Durables, UMR EDF 2832, F-92141 Clamart, France