Adaptive finite volume schemes for anisotropic heterogeneous diffusion problems on arbitary convex and nonconvex meshes

被引:0
|
作者
Bazirha, Zaroual [1 ]
Azrar, Lahcen [1 ,2 ]
Alghamedi, Ateq Ahmed [3 ]
机构
[1] Mohammed V Univ, Res Ctr STIS, Dept Appl Math & Informat, ENSAM,M2CS, Rabat, Morocco
[2] King Abdulaziz Univ, Fac Engn, Dept Mech Engn, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah, Saudi Arabia
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2025年 / 44卷 / 01期
关键词
Diffusion problems; Refinement; Non-convex mesh; Discrete Duality Finite Volume (DDFV); EQUATIONS; APPROXIMATION; OPERATORS; DDFV;
D O I
10.1007/s40314-025-03087-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solving the anisotropic heterogeneous diffusion problems requires a well adopted subdivision of the computational domain with a mesh refinement procedure to numerically guarantee the convergence. A new refinement procedure for quadrilateral meshes in convex or non-convex cases is elaborated herein. Various DDFV schemes are elaborated for anisotropic, strongly anisotropic and discontinuous diffusion tensors. Structured and unstructured meshes are considered in the convex and non-convex elements as well as arbitrary meshes with various distortion orders. The presented procedure allows eliminating the convergence rate sensitivity. The main advantage of this mesh refinement strategy is to reduce the percentage of non-convex elements at each step after refinement and to achieve super-convergence on discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{1}$$\end{document} and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{2}$$\end{document}-norms. The efficiency and performance of the elaborated adaptive DDFV scheme are numerically demonstrated for the considered quadrilateral meshes.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] A Nonlinear Finite Volume Element Method Satisfying Maximum Principle for Anisotropic Diffusion Problems on Arbitrary Triangular Meshes
    Gao, Yanni
    Wang, Shuai
    Yuan, Guangwei
    Hang, Xudeng
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (01) : 135 - 159
  • [22] The positivity-preserving finite volume scheme with fixed stencils for anisotropic diffusion problems on general polyhedral meshes
    Yang, Di
    Gao, Zhiming
    Ni, Guoxi
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (12) : 2137 - 2171
  • [23] The positivity-preserving finite volume scheme with fixed stencils for anisotropic diffusion problems on general polyhedral meshes
    Yang, Di
    Gao, Zhiming
    Ni, Guoxi
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (08) : 1233 - 1268
  • [24] Finite volume scheme for highly anisotropic diffusion operators on unstructured meshes.
    Le Potier, C
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (12) : 921 - 926
  • [25] Finite volume schemes for elliptic and elliptic-hyperbolic problems on triangular meshes
    Herbin, R
    Labergerie, O
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 147 (1-2) : 85 - 103
  • [26] Nonlinear finite volume discretization for transient diffusion problems on general meshes
    Quenjel, El Houssaine
    APPLIED NUMERICAL MATHEMATICS, 2021, 161 : 148 - 168
  • [27] Finite volume box schemes on triangular meshes
    Courbet, B
    Croisille, JP
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (05): : 631 - 649
  • [28] Finite difference schemes on time-adaptive meshes for problems with generalized solutions
    Samarskii, AA
    Jovanovic, BS
    Matus, PP
    Shcheglik, VS
    FINITE DIFFERENCE METHODS: THEORY AND APPLICATIONS, 1999, : 207 - 219
  • [29] An enhanced flux continuity three-dimensional finite element method for heterogeneous and anisotropic diffusion problems on general meshes
    Hai, Ong Thanh
    Nguyen, Thi Hoai Thuong
    Le, Anh Ha
    Do, Nguyen Van Vuong
    JOURNAL OF ENGINEERING MATHEMATICS, 2024, 145 (01)
  • [30] An enhanced flux continuity three-dimensional finite element method for heterogeneous and anisotropic diffusion problems on general meshes
    Ong Thanh Hai
    Thi Hoai Thuong Nguyen
    Anh Ha Le
    Vuong Nguyen Van Do
    Journal of Engineering Mathematics, 2024, 145