Adaptive finite volume schemes for anisotropic heterogeneous diffusion problems on arbitary convex and nonconvex meshes

被引:0
|
作者
Bazirha, Zaroual [1 ]
Azrar, Lahcen [1 ,2 ]
Alghamedi, Ateq Ahmed [3 ]
机构
[1] Mohammed V Univ, Res Ctr STIS, Dept Appl Math & Informat, ENSAM,M2CS, Rabat, Morocco
[2] King Abdulaziz Univ, Fac Engn, Dept Mech Engn, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah, Saudi Arabia
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2025年 / 44卷 / 01期
关键词
Diffusion problems; Refinement; Non-convex mesh; Discrete Duality Finite Volume (DDFV); EQUATIONS; APPROXIMATION; OPERATORS; DDFV;
D O I
10.1007/s40314-025-03087-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solving the anisotropic heterogeneous diffusion problems requires a well adopted subdivision of the computational domain with a mesh refinement procedure to numerically guarantee the convergence. A new refinement procedure for quadrilateral meshes in convex or non-convex cases is elaborated herein. Various DDFV schemes are elaborated for anisotropic, strongly anisotropic and discontinuous diffusion tensors. Structured and unstructured meshes are considered in the convex and non-convex elements as well as arbitrary meshes with various distortion orders. The presented procedure allows eliminating the convergence rate sensitivity. The main advantage of this mesh refinement strategy is to reduce the percentage of non-convex elements at each step after refinement and to achieve super-convergence on discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{1}$$\end{document} and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{2}$$\end{document}-norms. The efficiency and performance of the elaborated adaptive DDFV scheme are numerically demonstrated for the considered quadrilateral meshes.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes
    Schneider, Martin
    Agelas, Leo
    Enchery, Guillaume
    Flemisch, Bernd
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 351 : 80 - 107
  • [2] A family of edge-centered finite volume schemes for heterogeneous and anisotropic diffusion problems on unstructured meshes
    Liu, Ziqi
    Miao, Shuai
    Zhang, Zhimin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 146 : 165 - 175
  • [3] A family of quadratic finite volume element schemes for anisotropic diffusion problems on triangular meshes
    Zhou, Yanhui
    Wu, Jiming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 402
  • [4] A linearity-preserving technique for finite volume schemes of anisotropic diffusion problems on polygonal meshes
    Dong, Cheng
    Kang, Tong
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 201 : 141 - 162
  • [5] Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes
    Agelas, Leo
    Masson, Roland
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (17-18) : 1007 - 1012
  • [6] FINITE-VOLUME METHODS FOR ANISOTROPIC DIFFUSION PROBLEMS ON SKEWED MESHES
    Liu, Xiaogang
    Ming, Pingjian
    Zhang, Wenping
    Fu, Lirong
    Jing, Lilong
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2015, 68 (03) : 239 - 256
  • [7] A VIRTUAL VOLUME METHOD FOR HETEROGENEOUS AND ANISOTROPIC DIFFUSION-REACTION PROBLEMS ON GENERAL MESHES
    Coatleven, Julien
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03): : 797 - 824
  • [8] A positivity-preserving edge-centred finite volume scheme for heterogeneous and anisotropic diffusion problems on polygonal meshes
    Miao, Shuai
    Su, Shuai
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [9] Composite finite volume schemes for the diffusion equation on unstructured meshes
    Blanc, Xavier
    Hoch, Philippe
    Lasuen, Clement
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 156 : 207 - 217
  • [10] Monotone finite volume schemes for diffusion equations on polygonal meshes
    Yuan, Guangwei
    Sheng, Zhiqiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (12) : 6288 - 6312